The Moon is generally believed to have formed from debris ejected by a large off-centre collision with the early Earth. The impact orientation and size are constrained by the angular momentum contained in both the Earth's spin and the Moon's orbit, a quantity that has been nearly conserved over the past 4.5 billion years. Simulations of potential moon-forming impacts now achieve resolutions sufficient to study the production of bound debris. However, identifying impacts capable of yielding the Earth-Moon system has proved difficult. Previous works found that forming the Moon with an appropriate impact angular momentum required the impact to occur when the Earth was only about half formed, a more restrictive and problematic model than that originally envisaged. Here we report a class of impacts that yield an iron-poor Moon, as well as the current masses and angular momentum of the Earth-Moon system. This class of impacts involves a smaller-and thus more likely-object than previously considered viable, and suggests that the Moon formed near the very end of Earth's accumulation.
Several remote observations have indicated that water ice may be presented in permanently shadowed craters of the Moon. The Lunar Crater Observation and Sensing Satellite (LCROSS) mission was designed to provide direct evidence. On 9 October 2009, a spent Centaur rocket struck the persistently shadowed region within the lunar south pole crater Cabeus, ejecting debris, dust, and vapor. This material was observed by a second "shepherding" spacecraft, which carried nine instruments, including cameras, spectrometers, and a radiometer. Near-infrared absorbance attributed to water vapor and ice and ultraviolet emissions attributable to hydroxyl radicals support the presence of water in the debris. The maximum total water vapor and water ice within the instrument field of view was 155 ± 12 kilograms. Given the estimated total excavated mass of regolith that reached sunlight, and hence was observable, the concentration of water ice in the regolith at the LCROSS impact site is estimated to be 5.6 ± 2.9% by mass. In addition to water, spectral bands of a number of other volatile compounds were observed, including light hydrocarbons, sulfur-bearing species, and carbon dioxide.
Terrestrial planet formation is believed to have concluded in our Solar System with about 10 million to 100 million years of giant impacts, where hundreds of Moon- to Mars-sized planetary embryos acquired random velocities through gravitational encounters and resonances with one another and with Jupiter. This led to planet-crossing orbits and collisions that produced the four terrestrial planets, the Moon and asteroids. But here we show that colliding planets do not simply merge, as is commonly assumed. In many cases, the smaller planet escapes from the collision highly deformed, spun up, depressurized from equilibrium, stripped of its outer layers, and sometimes pulled apart into a chain of diverse objects. Remnants of these 'hit-and-run' collisions are predicted to be common among remnant planet-forming populations, and thus to be relevant to asteroid formation and meteorite petrogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.