Transgenerational carcinogenesis refers to transmission of cancer risk to the untreated progeny of parents exposed to carcinogens before mating. Accumulated evidence suggests that the mechanism of this process is epigenetic, and might involve hormonal and gene expression changes in offspring. To begin to test this hypothesis, we utilized a mouse model (NIH Swiss) in which exposure of fathers to Cr(III) chloride 2 wk before mating can alter incidence of neoplastic and nonneoplastic changes in offspring tissues. Utilizing a MS-RDA approach, we found that the sperm of these fathers had a significantly higher percentage of undermethylated copies of the 45S ribosomal RNA gene (rRNA); this finding was confirmed by bisulfite sequencing. Because gene methylation is a known mechanism of expression control in germ cells, and ribosomal RNA levels have been linked to cancer, these findings are consistent with the hypothesis. Secondly, we observed that offspring of Cr(III)-treated fathers were significantly heavier than controls, and had higher levels of serum T3. Possible effects of T3 levels on gene expression in the offspring were examined by microarray analysis of cDNAs from liver. A total of 58 genes, including 25 named genes, had expression ratios that correlated significantly with serum T3 ratios at P = 0.001. Some of these genes have potential roles in growth and/or tumor suppression. These results also support the hypothesis of an epigenetic and/or gene expression-based mechanism for transgenerational carcinogenesis. Published 2004 Wiley-Liss, Inc.
Gene rearrangement occurs during development in some cell types and this genome dynamics is modulated by intrinsic and extrinsic factors, including growth stimulants and nutrients. This raises a possibility that such structural change in the genome and its subsequent epigenetic modifications may also take place during mammalian ontogeny, a process undergoing finely orchestrated cell division and differentiation. We tested this hypothesis by comparing single nucleotide polymorphism-defined haplotype frequencies and DNA methylation of the rDNA multicopy gene between two mouse ontogenic stages and among three adult tissues of individual mice. Possible influences to the genetic and epigenetic dynamics by paternal exposures were also examined for Cr(III) and acid saline extrinsic factors. Variables derived from litters, individuals, and duplicate assays in large mouse populations were examined using linear mixed-effects model. We report here that active rDNA rearrangement, represented by changes of haplotype frequencies, arises during ontogenic progression from day 8 embryos to 6-week adult mice as well as in different tissue lineages and is modifiable by paternal exposures. The rDNA methylation levels were also altered in concordance with this ontogenic progression and were associated with rDNA haplotypes. Sperm showed highest level of methylation, followed by lungs and livers, and preferentially selected haplotypes that are positively associated with methylation. Livers, maintaining lower levels of rDNA methylation compared with lungs, expressed more rRNA transcript. In vitro transcription demonstrated haplotype-dependent rRNA expression. Thus, the genome is also dynamic during mammalian ontogeny and its rearrangement may trigger epigenetic changes and subsequent transcriptional controls, that are further influenced by paternal exposures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.