A stochastic simulation method designed to study at an atomic resolution the growth kinetics of compounds characterized by the sp3‐type bonding symmetry is presented. Formalization and implementation details are discussed for the particular case of the 3C‐SiC material. A key feature of this numerical tool is the ability to simulate the evolution of both point‐like and extended defects, whereas atom kinetics depend critically on process‐related parameters. In particular, the simulations can describe the surface state of the crystal and the generation/evolution of defects as a function of the initial substrate condition and the calibration of the simulation parameters. Quantitative predictions of the microstructural evolution of the studied systems can be readily compared with the structural characterization of actual processed samples is demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.