We define concepts of amenability and co-amenability for locally compact quantum groups in the sense of J. Kustermans and S. Vaes. Co-amenability of a lcqg (locally compact quantum group) is proved to be equivalent to a series of statements, all of which imply amenability of the dual lcqg. Further, it is shown that if a lcqg is amenable, then its universal dual lcqg is nuclear. We also define and study amenability and weak containment concepts for representations and corepresentations of lcqg's.
This paper is an invitation to Fourier analysis in the context of reduced twisted C*-crossed products associated with discrete unital twisted C*-dynamical systems. We discuss norm-convergence of Fourier series, multipliers and summation processes. Our study relies in an essential way on the (covariant and equivariant) representation theory of C * -dynamical systems on Hilbert C*-modules. It also yields some information on the ideal structure of reduced twisted C*-crossed products.
Let G denote a discrete group and let us say that G is C*-simple if the reduced group C*-algebra associated with G is simple. We notice immediately that there is no interest in considering here the full group C*-algebra associated with G, because it is simple if and only if C is trivial. Since Powers in 1975 [26] proved that all nonabelian free groups are C*-simple, the class of C*-simp1e groups has been considerably enlarged (see [1, 2, 6, 7, 12, 13, 14, 16, 24] as a sample!), and two important subclasses are so-called weak Powers groups ([6, 13]; see Section 4 for definition and examples) and the groups of Akemann-Lee type [1, 2], which are groups possessing a normal non-abelian free subgroup with trivial centralizer.
We study norm convergence and summability of Fourier series in the setting of reduced twisted group C * -algebras of discrete groups. For amenable groups, Følner nets give the key to Fejér summation. We show that Abel-Poisson summation holds for a large class of groups, including e.g. all Coxeter groups and all Gromov hyperbolic groups. As a tool in our presentation, we introduce notions of polynomial and subexponential H-growth for countable groups w.r.t. proper scale functions, usually chosen as length functions. These coincide with the classical notions of growth in the case of amenable groups.MSC 1991: 22D10, 22D25, 46L55, 43A07, 43A65
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.