Background
The triple pelvic osteotomy is an established surgical method with multiple modifications regarding surgical technique and choice of implant. The stability of the osteotomy is affected by numerous factors, and among these, the three-dimensional implant configuration is a scientifically less explored aspect.
Methods
We used a finite element model of a hemi-pelvis with a standardized triple osteotomy to calculate relative flexibility for loads in all translational degrees of freedom for five different implant configurations. Two of the configurations used entry points only feasible when implant removal was not necessary.
Results
The stability of the osteotomy improved with an increased distance between the implants in the plane of the osteotomy as well as for a more perpendicular angle relative to the osteotomy plane. The implant configurations with more entry points available made this easier to adhere to.
Conclusion
The use of bioabsorbable implants may provide better opportunities for optimal implant constructs which can, to a certain degree, compensate for the lesser mechanical stiffness of bioabsorbable polymers as compared to metal implants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.