Individual surface nanobubbles are visualized with nonintrusive optical interference-enhanced reflection microscopy, demonstrating that their formation is not a consequence of the hitherto used intrusive atomic force microscopy technique. We then use this new and fast technique to demonstrate that surface nanobubbles form in less than a few seconds after ethanol-water exchange, which is the standard procedure for their preparation, and examine how they react to temperature variations.
The primary attribute of interest of surface nanobubbles is their unusual stability and a number of theories trying to explain this have been put forward. Interestingly, the dissolution of nanobubbles is a topic that did not receive a lot of attention yet. In this work we applied two different experimental procedures which should cause gaseous nanobubbles to completely dissolve. In our experiments we nucleated nanobubble-like objects by putting a drop of water on HOPG using a plastic syringe and disposable needle. In method A, the nanobubble-like objects were exposed to a flow of degassed water (1.17 mg/l) for 96 hours. In method B, the ambient pressure was lowered in order to degas the liquid and the nanobubble-like objects. Interestingly, the nanobubblelike objects remained stable after exposure to both methods. After thorough investigation of the procedures and materials used during our experiments, we found that the nanobubble-like object were induced by the use of disposable needles in which PDMS contaminated the water. It is very important for the nanobubble community to be aware of the fact that, although features look and behave like nanobubbles, in some cases they might in fact be or induced by contamination. The presence of contamination could also resolve some inconsistencies found in the nanobubble literature.
The dissolution process of small (initial (equivalent) radius R 0 < 1 mm) long-chain alcohol (of various types) sessile droplets in water is studied, disentangling diffusive and convective contributions. The latter can arise for high solubilities of the alcohol, as the density of the alcohol-water mixture is then considerably less than that of pure water, giving rise to buoyancy-driven convection. The convective flow around the droplets is measured, using micro-particle image velocimetry (µPIV) and the schlieren technique. When non-dimensionalizing the system, we find a universal Sh ∼ Ra 1/4 scaling relation for all alcohols (of different solubilities) and all droplets in the convective regime. Here Sh is the Sherwood number (dimensionless mass flux) and Ra is the Rayleigh number (dimensionless density difference between clean and alcohol-saturated water). This scaling implies the scaling relation τ c ∝ R 5/4 0 of the convective dissolution time τ c , which is found to agree with experimental data. We show that in the convective regime the plume Reynolds number (the dimensionless velocity) of the detaching alcohol-saturated plume follows Re p ∼ Sc −1 Ra 5/8 , which is confirmed by the µPIV data. Here, Sc is the Schmidt number. The convective regime exists when Ra > Ra t , where Ra t = 12 is the transition Ra number as extracted from the data. For Ra Ra t and smaller, convective transport is progressively overtaken by diffusion and the above scaling relations break down.
The dissolution dynamics of microscopic oil droplets (less than 1 μm in height, i.e. nanodroplets) on a hydrophobilized silicon surface in water was experimentally studied. The lateral diameter was monitored using confocal microscopy, whereas the contact angle was measured by (disruptive) droplet polymerisation of the droplet. In general, we observed the droplets to dissolve in a mixed mode, i.e., neither in the constant contact angle mode nor in the constant contact radius mode. This means that both the lateral diameter and the contact angle of the nanodroplets decrease during the dissolution process. On average, the dissolution rate is faster for droplets with larger initial size. Droplets with the same initial size can, however, possess different dissolution rates. We ascribe the non-universal dissolution rates to chemical and geometric surface heterogeneities (that lead to contact line pinning) and cooperative effects from the mass exchange among neighbouring droplets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.