Th1 and Th17 subtype effector CD4(+) T cells are thought to play a critical role in the pathogenesis of human and experimental crescentic glomerulonephritis. The time course, mechanism, and functions of Th1 and Th17 cell recruitment, and their potential interaction in glomerulonephritis, however, remain to be elucidated. We performed interventional studies using IL-17- and IFN-γ-gene-deficient mice, as well as neutralizing antibodies that demonstrated the importance of the Th17-mediated immune response during the early phase of the disease. At a later stage, we found that Th1 cells were critical mediators of renal tissue injury. Early recruitment of IL-17-producing Th17 cells triggered expression of the chemokine CXCL9 in the kidney that drove the infiltration of Th1 cells bearing its receptor CXCR3. At a later stage, Th1 cell-derived IFN-γ was found to inhibit local chemokine CCL20 expression, acting through its receptor CCR6 on Th17 cells, thereby limiting the renal Th17 immune response. Thus, our findings provide mechanistic evidence for a cytokine-chemokine-driven feedback loop that orchestrates the observed differential Th1 and Th17 cell infiltration into the inflamed kidney. This contributes to the observed time-dependent function of these two major pathogenic effector CD4(+) T cell subsets in crescentic glomerulonephritis.
Neutrophil trafficking to sites of inflammation is essential for the defense against bacterial and fungal infections, but also contributes to tissue damage in T H 17-mediated autoimmunity. This process is regulated by chemokines, which often show an overlapping expression pattern and function in pathogen-and autoimmune-induced inflammatory reactions. Using a murine model of crescentic GN, we show that the pathogenic T H 17/IL-17 immune response induces chemokine (C-X-C motif) ligand 5 (CXCL5) expression in kidney tubular cells, which recruits destructive neutrophils that contribute to renal tissue injury. By contrast, CXCL5 was dispensable for neutrophil recruitment and effective bacterial clearance in a murine model of acute bacterial pyelonephritis. In line with these findings, CXCL5 expression was highly upregulated in the kidneys of patients with ANCA-associated crescentic GN as opposed to patients with acute bacterial pyelonephritis. Our data therefore identify CXCL5 as a potential therapeutic target for the restriction of pathogenic neutrophil infiltration in T H 17-mediated autoimmune diseases while leaving intact the neutrophil function in protective immunity against invading pathogens.
ANCA-associated vasculitis is the most frequent cause of crescentic GN. To define new molecular and/or cellular biomarkers of this disease in the kidney, we performed microarray analyses of renal biopsy samples from patients with ANCA-associated crescentic GN. Expression profiles were correlated with clinical data in a prospective study of patients with renal ANCA disease. CC chemokine ligand 18 (CCL18), acting through CC chemokine receptor 8 (CCR8) on mononuclear cells, was identified as the most upregulated chemotactic cytokine in patients with newly diagnosed ANCA-associated crescentic GN. Macrophages and myeloid dendritic cells in the kidney were detected as CCL18-producing cells. The density of CCL18 + cells correlated with crescent formation, interstitial inflammation, and impairment of renal function. CCL18 protein levels were higher in sera of patients with renal ANCA disease compared with those in sera of patients with other forms of crescentic GN. CCL18 serum levels were higher in patients who suffered from ANCA-associated renal relapses compared with those in patients who remained in remission. Using a murine model of crescentic GN, we explored the effects of the CCL18 murine functional analog CCL8 and its receptor CCR8 on kidney function and morphology. Compared with wild-type mice, Ccr8 2/2 mice had significantly less infiltration of pathogenic mononuclear phagocytes. Furthermore, Ccr8 2/2 mice maintained renal function better and had reduced renal tissue injury. In summary, our data indicate that CCL18 drives renal inflammation through CCR8-expressing cells and could serve as a biomarker for disease activity and renal relapse in ANCA-associated crescentic GN.
Interleukin-17A (IL-17) promotes inflammatory renal tissue damage in mouse models of crescentic glomerulonephritis, including murine experimental autoimmune anti-myeloperoxidase glomerulonephritis, which most likely depends on IL-17-producing Th17 cells. In human anti-neutrophil cytoplasmic antibody (ANCA)-associated glomerulonephritis, however, the cellular sources of IL-17 remain to be elucidated. Therefore, we analyzed human kidney biopsies of active necrotizing and crescentic ANCA-associated glomerulonephritis by immunohistochemistry using an IL-17-specific antibody and by immunofluorescent colocalization with cell type markers. We detected numerous IL-17-expressing (IL-17+) cells in the glomeruli and in the tubulointerstitium. Unexpectedly, most of these IL-17+ cells were polymorphonuclear neutrophilic granulocytes, while IL-17+ T cells and IL-17+ mast cells were present at significantly lower frequencies. IL-17 was not detected in other infiltrating or resident kidney cells. In those patients who had not received immunosuppressive treatment before biopsy, serum creatinine levels were positively correlated with tubulointerstitial IL-17+ neutrophils as well as IL-17+ T cells. Furthermore, we could demonstrate that purified human blood neutrophils expressed IL-17 protein and released it upon stimulation in vitro. In conclusion, these results support a pathogenic role for IL-17 in human ANCA-associated glomerulonephritis. Our data suggest that in the acute stage of the disease neutrophils may act as an important immediate-early innate source of IL-17 and may thereby initiate and promote ongoing renal inflammation. IL-17 may thus be a target for treating acute ANCA-associated glomerulonephritis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.