Abstract. This paper presents a multi-agent system for the care of elderly people living at home on their own, with the aim to prolong their independence. The system is composed of seven groups of agents providing a reliable, robust and flexible monitoring by sensing the user in the environment, reconstructing the position and posture to create the physical awareness of the user in the environment, reacting to critical situations, calling for help in the case of an emergency, and issuing warnings if unusual behavior is detected. The system has been tested during several on-line demonstrations.
Background Congestive heart failure (CHF) is a disease that requires complex management involving multiple medications, exercise, and lifestyle changes. It mainly affects older patients with depression and anxiety, who commonly find management difficult. Existing mobile apps supporting the self-management of CHF have limited features and are inadequately validated. Objective The HeartMan project aims to develop a personal health system that would comprehensively address CHF self-management by using sensing devices and artificial intelligence methods. This paper presents the design of the system and reports on the accuracy of its patient-monitoring methods, overall effectiveness, and patient perceptions. Methods A mobile app was developed as the core of the HeartMan system, and the app was connected to a custom wristband and cloud services. The system features machine learning methods for patient monitoring: continuous blood pressure (BP) estimation, physical activity monitoring, and psychological profile recognition. These methods feed a decision support system that provides recommendations on physical health and psychological support. The system was designed using a human-centered methodology involving the patients throughout development. It was evaluated in a proof-of-concept trial with 56 patients. Results Fairly high accuracy of the patient-monitoring methods was observed. The mean absolute error of BP estimation was 9.0 mm Hg for systolic BP and 7.0 mm Hg for diastolic BP. The accuracy of psychological profile detection was 88.6%. The F-measure for physical activity recognition was 71%. The proof-of-concept clinical trial in 56 patients showed that the HeartMan system significantly improved self-care behavior (P=.02), whereas depression and anxiety rates were significantly reduced (P<.001), as were perceived sexual problems (P=.01). According to the Unified Theory of Acceptance and Use of Technology questionnaire, a positive attitude toward HeartMan was seen among end users, resulting in increased awareness, self-monitoring, and empowerment. Conclusions The HeartMan project combined a range of advanced technologies with human-centered design to develop a complex system that was shown to help patients with CHF. More psychological than physical benefits were observed. Trial Registration ClinicalTrials.gov NCT03497871; https://clinicaltrials.gov/ct2/history/NCT03497871. International Registered Report Identifier (IRRID) RR2-10.1186/s12872-018-0921-2
Nowadays, Renewable Energy Sources (RES) are attracting more and more interest. Thus, many countries aim to increase the share of green energy and have to face with several challenges (e.g., balancing, storage, pricing). In this paper, we address the balancing challenge and present the MIRABEL project which aims to prototype an Energy Data Management System (EDMS) which takes benefit of flexibilities to efficiently balance energy demand and supply. The EDMS consists of millions of heterogeneous nodes that each incorporates advanced components (e.g., aggregation, forecasting, scheduling, negotiation). We describe each of these components and their interaction. Preliminary experimental results confirm the feasibility of our EDMS.
Starting renal replacement therapy (RRT) for patients with chronic kidney disease (CKD) at an optimal time, either with hemodialysis or kidney transplantation, is crucial for patient's well-being and for successful management of the condition. In this paper, we explore the possibilities of creating forecasting models to predict the onset of RRT 3, 6, and 12 months from the time of the patient's first diagnosis with CKD, using only the comorbidities data from National Health Insurance from Taiwan. The goal of this study was to see whether a limited amount of data (including comorbidities but not considering laboratory values which are expensive to obtain in low-and medium-income countries) can provide a good basis for such predictive models. On the other hand, in developed countries, such models could allow policy-makers better planning and allocation of resources for treatment. Using data from 8,492 patients, we obtained the area under the receiver operating characteristic curve (AUC) of 0.773 for predicting RRT within 12 months from the time of CKD diagnosis. The results also show that there is no additional advantage in focusing only on patients with diabetes in terms of prediction performance. Although these results are not as such suitable for adoption into clinical practice, the study provides a strong basis and a variety of approaches for future studies of forecasting models in healthcare.
Chronic kidney disease (CKD) represents a heavy burden on the healthcare system because of the increasing number of patients, high risk of progression to end-stage renal disease, and poor prognosis of morbidity and mortality. The aim of this study is to develop a machine-learning model that uses the comorbidity and medication data obtained from Taiwan’s National Health Insurance Research Database to forecast the occurrence of CKD within the next 6 or 12 months before its onset, and hence its prevalence in the population. A total of 18,000 people with CKD and 72,000 people without CKD diagnosis were selected using propensity score matching. Their demographic, medication and comorbidity data from their respective two-year observation period were used to build a predictive model. Among the approaches investigated, the Convolutional Neural Networks (CNN) model performed best with a test set AUROC of 0.957 and 0.954 for the 6-month and 12-month predictions, respectively. The most prominent predictors in the tree-based models were identified, including diabetes mellitus, age, gout, and medications such as sulfonamides and angiotensins. The model proposed in this study could be a useful tool for policymakers in predicting the trends of CKD in the population. The models can allow close monitoring of people at risk, early detection of CKD, better allocation of resources, and patient-centric management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.