A method for isolating and cloning mRNA populations from individual cells in living, intact plant tissues is described. The contents of individual cells were aspirated into micropipette tips filled with RNA extraction buffer. The mRNA from these cells was purified by binding to oligo(dT)-linked magnetic beads and amplified on the beads using reverse transcription and PCR. The cell-specific nature of the isolated mRNA was verified by creating cDNA libraries from individual tomato leaf epidermal and guard cell mRNA preparations. In testing the reproducibility of the method, we discovered an inherent limitation of PCR amplification from small amounts of any complex template. This phenomenon, which we have termed the "Monte Carlo" effect, is created by small and random differences in amplification efficiency between individual templates in an amplifying cDNA population. The Monte Carlo effect is dependent upon template concentration: the lower the abundance of any template, the less likely its true abundance will be reflected in the amplified library. Quantitative assessment of the Monte Carlo effect revealed that only rare mRNAs (<0.04% of polyadenylylated mRNA) exhibited significant variation in amplification at the single-cell level. The cDNA cloning approach we describe should be useful for a broad range of cell-specific biological applications.
The biophysical properties of the tobacco mosaic tobamovirus (TMV) coat protein (CP) make it possible to display foreign peptides on the surface of TMV. The immunogenic epitopes G5-24 from the rabies virus (RV) glycoprotein, and 5B19 from murine hepatitis virus (MHV) S-glycoprotein were successfully displayed on the surface of TMV, and viruses accumulated to high levels in infected leaves of Nicotiana tabacum Xanthi-nn. The peptide RB19, which contains an arginine residue plus the 5B19 epitope fused to the CP (TMV-RB19), resulted in the induction of necrotic local lesions on inoculated leaves of N. tabacum Xanthi-nn and cell death of infected BY2 protoplasts. RNA dot blot assays confirmed that expression of the acidic and basic pathogenesis-related PR2 genes were induced in infected Xanthi-nn leaf tissue. TMV that carried epitope 31D from the RV nucleoprotein did not accumulate in inoculated tobacco leaves. Analysis of hybrid CPs predicted that the isoelectric points (pI):charge value was 5.31:-2 for wild-type CP, 5.64:-1 for CP-RB19, and 9.14:+2 for CP-31D. When acidic amino acids were inserted in CP-RB19 and CP-31D to bring their pI:charge to near that of wild-type CP, the resulting viruses TMV-RB19E and TMV-4D:31D infected N. tabacum Xanthi-nn plants and BY2 protoplasts without causing cell death. These data show the importance of the pI of the epitope and its effects on the hybrid CP pI:charge value for successful epitope display as well as the lack of tolerance to positively charged epitopes on the surface of TMV.
Steady-state levels of mRNA from individual alpha-amylase genes were measured in the embryo and aleurone tissues of rice (Oryza sativa) and two varieties of barley (Hordeum vulgare L. cv. Himalaya and cv. Klages) during germination. Each member of the alpha-amylase multigene families of rice and barley was differentially expressed in each tissue. In rice, alpha-amylase genes displayed tissue-specific expression in which genes RAmy3B, RAmy3C, and RAmy3E were preferentially expressed in the aleurone layer, genes RAmy1A, RAmy1B and RAmy3D were expressed in both the embryo and aleurone, and genes RAmy3A and RAmy2A were not expressed in either tissue. Whenever two or more genes were expressed in any tissue, the rate of mRNA accumulation from each gene was unique. In contrast to rice, barley alpha-amylase gene expression was not tissue-specific. Messenger RNAs encoding low- and high-pI alpha-amylase isozymes were detectable in both the embryo and aleurone and accumulated at different rates in each tissue. In particular, peak levels of mRNA encoding high-pI alpha-amylases always preceded those encoding low-pI alpha-amylases. Two distinct differences in alpha-amylase gene expression were observed between the two barley varieties. Levels of high-pI alpha-amylase mRNA peaked two days earlier in Klages embryos than in Himalaya embryos. Throughout six days of germination, Klages produced three times as much high-pI alpha-amylase mRNA and nearly four times as much low-pI alpha-amylase mRNA than the slower-germinating Himalaya variety.
The barley gene encoding isozyme I of 1,3‐1,4‐β‐glucanase was isolated and sequenced. The 6260‐bp region sequenced included 1885 bp of the 5′‐flanking region, the entire coding region, an intron of 2490 bp, and 792 bp of the 3′‐flanking region. The 1,3‐1,4‐β‐glucanase mRNA was found to be regulated at the level of RNA accumulation by both gibberellins (positively) and abscisic acid (negatively) in barley aleurones. The mRNA for isozyme II preferentially accumulated (70%) relative to the mRNA for isozyme I (30%) in poly(A)‐rich RNA isolated from material including both the aleurone and the scutellum tissues. The gene family encoding 1,3‐1,4‐β‐glucanase enzymes in barley was found to be comprised of two closely related genes, isozymes I and II, as well as several related sequences that could be identified by Southern blot analysis. The nucleotide sequence for the 5′ untranslated leader and the coding region for the signal peptide of the isozyme II transcript were determined from a cDNA produced by the polymerase chain reaction. The structure of the protein encoded by the isozyme I gene is also discussed.
Isolated rice embryos were used to investigate the regulatory effects of endosperm extracts and pure sugars on the expression of alpha-amylase gene RAmy3D and a sucrose synthase gene homologous to the maize isozyme Ss2. The high-level expression of RAmy3D in the scutella of isolated embryos could be inhibited by a variety of sugars as well as endosperm extracts from germinated rice grains. Glucose, at a concentration of 250 mM, was most effective in repressing RAmy3D mRNA accumulation. Furthermore, this repression was reversible. Interestingly, RAmy3D repression was always accompanied by the induction of sucrose synthase gene expression. These results support a model in which the expression of alpha-amylase and sucrose synthase genes in the rice scutellum are counter-regulated by the influx of sugars from the endosperm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.