To keep balance when standing or walking on a surface inclined in the roll plane, the cat modifies its body configuration so that the functional length of its right and left limbs becomes different. The aim of the present study was to assess the motor cortex participation in the generation of this left/right asymmetry. We recorded the activity of fore-and hindlimb-related pyramidal tract neurons (PTNs) during standing and walking on a treadmill. A difference in PTN activity at two tilted positions of the treadmill (± 15 deg) was considered a positional response to surface inclination. During standing, 47% of PTNs exhibited a positional response, increasing their activity with either the contra-tilt (20%) or the ipsi-tilt (27%). During walking, PTNs were modulated in the rhythm of stepping, and tilts of the supporting surface evoked positional responses in the form of changes to the magnitude of modulation in 58% of PTNs. The contra-tilt increased activity in 28% of PTNs, and ipsi-tilt increased activity in 30% of PTNs. We suggest that PTNs with positional responses contribute to the modifications of limb configuration that are necessary for adaptation to the inclined surface. By comparing the responses to tilts in individual PTNs during standing and walking, four groups of PTNs were revealed: responding in both tasks (30%); responding only during standing (16%); responding only during walking (30%); responding in none of the tasks (24%). This diversity suggests that common and separate cortical mechanisms are used for postural adaptation to tilts during standing and walking.
During locomotion, motor cortical neurons projecting to the pyramidal tract (PTNs) discharge in close relation to strides. How their discharges vary based on the part of the body they influence is not well understood. We addressed this question with regard to joints of the forelimb in the cat. During simple and ladder locomotion, we compared the activity of four groups of PTNs with somatosensory receptive fields involving different forelimb joints: 1) 45 PTNs receptive to movements of shoulder, 2) 30 PTNs receptive to movements of elbow, 3) 40 PTNs receptive to movements of wrist, and 4) 30 nonresponsive PTNs. In the motor cortex, a relationship exists between the location of the source of afferent input and the target for motor output. On the basis of this relationship, we inferred the forelimb joint that a PTN influences from its somatosensory receptive field. We found that different PTNs tended to discharge differently during locomotion. During simple locomotion shoulder-related PTNs were most active during late stance/early swing, and upon transition from simple to ladder locomotion they often increased activity and stride-related modulation while reducing discharge duration. Elbow-related PTNs were most active during late swing/early stance and typically did not change activity, modulation, or discharge duration on the ladder. Wrist-related PTNs were most active during swing and upon transition to the ladder often decreased activity and increased modulation while reducing discharge duration. These data suggest that during locomotion the motor cortex uses distinct mechanisms to control the shoulder, elbow, and wrist.
Cell-or network-driven oscillators underlie motor rhythmicity. The identity of C. elegans oscillators remains unknown. Through cell ablation, electrophysiology, and calcium imaging, we show: (1) forward and backward locomotion is driven by different oscillators; (2) the cholinergic and excitatory A-class motor neurons exhibit intrinsic and oscillatory activity that is sufficient to drive backward locomotion in the absence of premotor interneurons; (3) the UNC-2 P/ Q/N high-voltage-activated calcium current underlies A motor neuron's oscillation; (4) descending premotor interneurons AVA, via an evolutionarily conserved, mixed gap junction and chemical synapse configuration, exert state-dependent inhibition and potentiation of A motor neuron's intrinsic activity to regulate backward locomotion. Thus, motor neurons themselves derive rhythms, which are dually regulated by the descending interneurons to control the reversal motor state. These and previous findings exemplify compression: essential circuit properties are conserved but executed by fewer numbers and layers of neurons in a small locomotor network.
Key points• The motor cortex is highly involved in performing complex movements including skilled locomotion.• Slow-conducting pyramidal tract neurons (PTNs) in the motor cortex are much more numerous than fast-conducting PTNs, but little is known about their function during movements.• We find here that slow-conducting PTNs show vigorous and concerted changes to their activities during accurate targeted stepping versus simple locomotion over a flat surface, while changes to the activities of fast-conducting PTNs vary.• This suggests that slow-conducting PTNs are involved to a greater extent in control of accuracy during locomotion.• The results may be relevant to developing therapies for stroke and traumatic brain injury.Abstract Most movements need to be accurate. The neuronal mechanisms controlling accuracy during movements are poorly understood. In this study we compare the activity of fast-and slow-conducting pyramidal tract neurons (PTNs) of the motor cortex in cats as they walk over both a flat surface, a task that does not require accurate stepping and can be accomplished without the motor cortex, as well as along a horizontal ladder, a task that requires accuracy and the activity of the motor cortex to be successful. Fast-and slow-conducting PTNs are known to have distinct biophysical properties as well as different afferent and efferent connections. We found that while the activity of all PTNs changes substantially upon transition from simple locomotion to accurate stepping on the ladder, slow-conducting PTNs respond in a much more concerted manner than fast-conducting ones. As a group, slow-conducting PTNs increase discharge rate, especially during the late stance and early swing phases, decrease discharge variability, have a tendency to shift their preferred phase of the discharge into the swing phase, and almost always produce a single peak of activity per stride during ladder locomotion. In contrast, the fast-conducting PTNs do not display such concerted changes to their activity. In addition, upon transfer from simple locomotion to accurate stepping on the ladder slow-conducting PTNs more profoundly increase the magnitude of their stride-related frequency modulation compared with fast-conducting PTNs. We suggest that slow-conducting PTNs are involved in control of accuracy of locomotor movements to a greater degree than fast-conducting PTNs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.