The conversion of aliphatic nitriles by the arylacetonitrilase from Pseudomonas fluorescens EBC191 (NitA) was analyzed. The nitrilase hydrolysed a wide range of aliphatic mono- and dinitriles and showed a preference for unsaturated aliphatic substrates containing 5-6 carbon atoms. In addition, increased reaction rates were also found for aliphatic nitriles carrying electron withdrawing substituents (e.g. chloro- or hydroxy-groups) close to the nitrile group. Aliphatic dinitriles were attacked only at one of the nitrile groups and with most of the tested dinitriles the monocarboxylates were detected as major products. In contrast, fumarodinitrile was converted to the monocarboxylate and the monocarboxamide in a ratio of about 65:35. Significantly different relative amounts of the two products were observed with two nitrilase variants with altered reaction specifities. NitA converted some aliphatic substrates with higher rates than 2-phenylpropionitrile, which is one of the standard substrates for arylacetonitrilases. This indicated that the traditional classification of nitrilases as "arylacetonitrilases", "aromatic" or "aliphatic" nitrilases might require some corrections. This was also suggested by the construction of some variants of NitA which were modified in an amino acid residue which was previously suggested to be essential for the conversion of aliphatic substrates by a homologous nitrilase.
The arylacetonitrilase from the bacterium Pseudomonas fluorescens EBC191 has been intensively studied as a model to understand the molecular basis for the substrate-, reaction-, and enantioselectivity of nitrilases. The nitrilase converts various aromatic and aliphatic nitriles to the corresponding acids and varying amounts of the corresponding amides. The enzyme has been analysed by site-specific mutagenesis and more than 50 different variants have been generated and analysed for the conversion of (R,S)-mandelonitrile and (R,S)-2-phenylpropionitrile. These comparative analyses demonstrated that single point mutations are sufficient to generate enzyme variants which hydrolyse (R,S)-mandelonitrile to (R)-mandelic acid with an enantiomeric excess (ee) of 91% or to (S)-mandelic acid with an ee-value of 47%. The conversion of (R,S)-2-phenylpropionitrile by different nitrilase variants resulted in the formation of either (S)- or (R)-2-phenylpropionic acid with ee-values up to about 80%. Furthermore, the amounts of amides that are produced from (R,S)-mandelonitrile and (R,S)-2-phenylpropionitrile could be changed by single point mutations between 2%–94% and <0.2%–73%, respectively. The present study attempted to collect and compare the results obtained during our previous work, and to obtain additional general information about the relationship of the amide forming capacity of nitrilases and the enantiomeric composition of the products.
The gentisate 1,2-dioxygenases (GDOs) from Corynebacterium glutamicum and various other organisms oxidatively cleave the aromatic nucleus of gentisate (2,5-dihydroxybenzoate), but are not able to convert salicylate (2-hydroxybenzoate). In contrast, the α-proteobacterium Pseudaminobacter salicylatoxidans synthesises an enzyme (‘salicylate dioxygenase’, SDO) which cleaves gentisate, but also (substituted) salicylate(s). Sequence comparisons showed that the SDO belongs to a group of GDOs mainly originating from Gram-positive bacteria which also include the GDO from C. glutamicum ATCC 13032. The combination of sequence comparisons with previously performed structural and mutational analyses of the SDO allowed to identify an amino acid residue (Ala112) which might prevent the oxidation of (substituted) salicylate(s) by the GDO from C. glutamicum. Therefore, the relevant mutation (Ala→Gly) was introduced into the GDO from C. glutamicum. The GDO variant obtained gained the ability to oxidise salicylate and several other monohydroxylated substrates. In order to screen a broader range of enzyme variants a chromogenic assay was developed which allowed the detection of bacterial colonies converting salicylate. The applicability of this test system was proven by screening a set of GDO variants obtained by saturation mutagenesis at different positions. This demonstrated that also GDO variants carrying the mutations Ala112→Ser, Ala112→Ile and Ala112→Asp converted salicylate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.