Abstract. We provide the explicit solutions of linear, left-invariant, diffusion equations and the corresponding resolvent equations on the 2D-Euclidean motion group SE(2) = R 2 T. These parabolic equations are forward Kolmogorov equations for well-known stochastic processes for contour enhancement and contour completion. The solutions are given by group convolution with the corresponding Green's functions. In earlier work we have solved the forward Kolmogorov equations (or Fokker-Planck equations) for stochastic processes on contour completion. Here we mainly focus on the forward Kolmogorov equations for contour enhancement processes which do not include convection. We derive explicit formulas for the Green's functions (i.e., the heat kernels on SE(2)) of the left-invariant partial differential equations related to the contour enhancement process. By applying a contraction we approximate the left-invariant vector fields on SE(2) by left-invariant generators of a Heisenberg group, and we derive suitable approximations of the Green's functions. The exact Green's functions are used in so-called collision distributions on SE(2), which are the product of two left-invariant resolvent diffusions given an initial distribution on SE(2). We use the left-invariant evolution processes for automated contour enhancement in noisy medical image data using a so-called orientation score, which is obtained from a grey-value image by means of a special type of unitary wavelet transformation. Here the real part of the (invertible) orientation score serves as an initial condition in the collision distribution.
Many image processing problems require the enhancement of crossing elongated structures. These problems cannot easily be solved by commonly used coherenceenhancing diffusion methods. Therefore, we propose a method for coherence-enhancing diffusion on the invertible orientation score of a 2D image. In an orientation score, the local orientation is represented by an additional third dimension, ensuring that crossing elongated structures are separated from each other. We consider orientation scores as functions on the Euclidean motion group, and use the group structure to apply left-invariant diffusion equations on orientation scores. We describe how we can calculate regularized left-invariant derivatives, and use the Hessian to estimate three descriptive local features: curvature, deviation from horizontality, and orientation confidence. These local features are used to adapt a nonlinear coherence-enhancing, crossing-preserving, diffusion equation on the orientation score. We propose two explicit finite-difference schemes to apply the nonlinear diffusion in the orientation score and provide a stability analysis. Experiments on both artificial and medical images show that preservation of crossings is the main advantage compared to standard coherenceenhancing diffusion. The use of curvature leads to improved enhancement of curves with high curvature. Furthermore,
HARDI (High Angular Resolution Diffusion Imaging) is a recent magnetic resonance imaging (MRI) technique for imaging water diffusion processes in fibrous tissues such as brain white matter and muscles. In this article we study left-invariant diffusion on the group of 3D rigid body movements (i.e. 3D Euclidean motion group) SE(3) and its application to crossing-preserving smoothing of HARDI images. The linear left-invariant (convection-)diffusions are forward Kolmogorov equations of Brownian motions on the space of positions and orientations in 3D embedded in SE(3) and can be solved by R 3 S 2 -convolution with the corresponding Green's functions. We provide analytic approximation formulas and explicit sharp Gaussian estimates for these Green's functions. In our design and analysis for appropriate (nonlinear) convection-diffusions on HARDI data we explain the underlying differential geometry on SE(3). We write our leftinvariant diffusions in covariant derivatives on SE(3) using the Cartan connection. This Cartan connection has constant curvature and constant torsion, and so have the exponential curves which are the auto-parallels along which our leftinvariant diffusion takes place. We provide experiments of R. Duits ( )
Abstract. By means of a special type of wavelet unitary transform we construct an orientation score from a grey-value image. This orientation score is a complex-valued function on the 2D Euclidean motion group SE(2) and gives us explicit information on the presence of local orientations in an image. As the transform between image and orientation score is unitary we can relate operators on images to operators on orientation scores in a robust manner. Here we consider nonlinear adaptive diffusion equations on these invertible orientation scores. These nonlinear diffusion equations lead to clear improvements of the celebrated standard "coherence enhancing diffusion" equations on images as they can enhance images with crossing contours. Here we employ differential geometry on SE(2) to align the diffusion with optimized local coordinate systems attached to an orientation score, allowing us to include local features such as adaptive curvature in our diffusions.
Direct detector device (DDD) cameras have revolutionized electron cryomicroscopy (cryoEM) with their high detective quantum efficiency (DQE) and output of movie data. A high ratio of camera frame rate (frames per second) to camera exposure rate (electrons per pixel per second) allows electron counting, which further improves the DQE and enables the recording of super-resolution information. Movie output also allows the correction of specimen movement and compensation for radiation damage. However, these movies come at the cost of producing large volumes of data. It is common practice to sum groups of successive camera frames to reduce the final frame rate, and therefore the file size, to one suitable for storage and image processing. This reduction in the temporal resolution of the camera requires decisions to be made during data acquisition that may result in the loss of information that could have been advantageous during image analysis. Here, experimental analysis of a new electron-event representation (EER) data format for electron-counting DDD movies is presented, which is enabled by new hardware developed by Thermo Fisher Scientific for their Falcon DDD cameras. This format enables the recording of DDD movies at the raw camera frame rate without sacrificing either spatial or temporal resolution. Experimental data demonstrate that the聽method retains super-resolution information and allows the correction of specimen movement at the physical frame rate of the camera while maintaining manageable file sizes. The EER format will enable the development of new methods that can utilize the full spatial and temporal resolution of DDD cameras.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2025 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.