In Electron cyclotron resonance heating systems, high-power multiplexers can be employed as power combiners, adjustable power dividers, fast switches to toggle the power between two launchers, as well as frequency sensitive directional couplers to combine heating and diagnostic applications on one launcher. In the paper, various diplexer designs for quasi-optical and corrugated waveguide transmission systems are discussed. Numerical calculations, low-power tests and especially high-power experiments performed at the ECRH system of W7-X are shown, which demonstrate the capability of these devices. Near term plans for applications on ASDEX Upgrade and FTU are presented. Based on the present results, options for implementation of power combiners and fast switches in the ECRH system of ITER is discussed.
Abstract. Characteristics of ring resonator diplexers for high-power ECRH are briefly reviewed. Commissioning experiments performed on ASDEX Upgrade with the diplexer Mk IIa are presented, which demonstrate slow and fast switching of the power between two launchers, and thus the capability for efficient suppression of neoclassical tearing modes and simultaneous central heating of the plasma. The development of the compact diplexer Mk IIIb is discussed, and test results are presented. Finally, an evacuated design for 170 GHz is shown.
Abstract. High-power resonant diplexers for millimetre waves have various promising applications in ECRH systems. The round-trip resonator length of a diplexer needs to be accurately tuned to match its prescribed functionality. For this purpose one of the mirrors in the FADIS MkIIa diplexer has been mounted on a motion system, in order to control the mirror to its desired location despite the presence of substantial disturbances. The mechanical properties and control strategy for the mirror motion system have been designed such as to meet the overall system requirements. The performance of the motion system has been experimentally validated in various high power mm-wave tests.
Cleanliness is a prerequisite for obtaining economically feasible yield levels in the semiconductor industry. For the next generation of lithographic equipment, EUV lithography, the size of yield-loss inducing particles for the masks will be smaller than 20 nm. Consequently, equipment for handling EUV masks should not add particles larger than 20 nm. Detection methods for 20 nm particles on large area surfaces are needed to qualify the equipment for cleanliness. Detection of 20 nm particles is extremely challenging, not only because of the particle size, but also because of the large surface area and limited available time.In 2002 TNO developed the RapidNano, a platform that is capable of detecting nanoparticles on flat substrates. Over the last decade, the smallest detectable particle size was decreased while the inspection rate was increased. This effort has led to a stable and affordable detection platform that is capable of inspecting the full surface of a mask blank.The core of RapidNano is a dark-field imaging technique. Every substrate type has a typical background characteristic, which strongly affects the size of the smallest detectable particle. The noise level is induced by the speckle generated by the surface roughness of the mask. The signal-to-noise ratio can be improved by illuminating the inspection area from nine different angles. This improvement was first shown on test bench level and then applied in the RapidNano3. The RapidNano3 is capable of detecting 42nm latex sphere equivalents (and larger) on silicon surfaces. RapidNano4, the next generation, will use 193 nm light and the same nine angle illumination mode. Camera sensitivity and available laser power determine the achievable throughput. Therefore, special care was given to the optical design, particularly the optical path. With RapidNano4, TNO will push the detection limit of defects on EUV blanks to below 20nm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.