A series of hollow biodegradable polymeric microcapsules were prepared, of which their susceptibility to ultrasound was used for triggered release. High speed imaging of the ultrasound experiments showed a strong correlation between the acoustic pressure needed to activate these microcapsules and their shell thickness to diameter ratio. Based on this information a selective triggering of capsules with two different shell thickness to diameter ratios was successfully performed. The capsules were mixed in a single system and were activated independently from each other by a differentiation in acoustic pressure levels. This application is of great interest in the field of drug delivery, since this system allows for localized multiple drug releases in a selective fashion.
Precision control of vapourization, both in space and time, has many potential applications; however, the physical mechanisms underlying controlled boiling are not well understood. The reason is the combined microscopic length scales and ultrashort timescales associated with the initiation and subsequent dynamical behaviour of the vapour bubbles formed. Here we study the nanoseconds vapour bubble dynamics of laser-heated single oil-filled microcapsules using coupled optical and acoustic detection. Pulsed laser excitation leads to vapour formation and collapse, and a simple physical model captures the observed radial dynamics and resulting acoustic pressures. Continuous wave laser excitation leads to a sequence of vapourization/condensation cycles, the result of absorbing microcapsule fragments moving in and out of the laser beam. A model incorporating thermal diffusion from the capsule shell into the oil core and surrounding water reveals the mechanisms behind the onset of vapourization. Excellent agreement is observed between the modelled dynamics and experiment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.