Blast–obstacle interaction is a complex, multi-faceted problem. Whilst engineering-level tools exist for predicting blast parameters (e.g. peak pressure, impulse and loading duration) in geometrically simple settings, a blast wave is fundamentally altered upon interaction with an object in its path, and hence, the loading parameters are themselves affected. This article presents a comprehensive review of key research in this area. The review is formed of five main parts, each describing: the direct loading of a blast wave on the surface of a finite-sized structure; the modified pressure of the blast wave in the wake region of three main obstacle types – blast walls, obstacles, wall/obstacle hybrids; and finally, a brief description of some methods for predicting loading parameters in such blast–obstacle interaction settings. Key findings relate to the mechanisms governing blast attenuation, for example, diffraction, reflection (diverting away from the target structure), expansion/volume increase, vortex creation/growth, as well as obstacle properties influencing these, such as porosity (blockage ratio), obstacle shape, number of obstacles/rows, arrangement and surface roughness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.