Continuous System Simulation (CSS) is a powerful way to study the behaviour of differential-algebraic equation models. Differential-algebraic equation modelling goes back to Newton and works well for models of e.g. physical systems where stochasticity plays almost no role, and where only a single attribute of an object is studied over time. However, when results from a deterministic CSS model are compared with results from a Discrete Event Simulation (DES) model, they are often inconsistent. The reasons behind this CSS-DES inconsistency are nowadays well understood. In this paper, we demonstrate that a CSS model can contain both continuous state variables (compartments) that change continuously over time and discrete state variables (also compartments) that model discrete entities and change by integer amounts. In both cases, the time-slicing method is used to advance time. Furthermore, stochasticity can and should play the same role in CSS as it does in DES. This paper first explains how a well-defined conceptual model can be stepwise transformed in a consistent way into a CSS model. These transformation steps provide insights into how to construct a consistent CSS model. In short, this is about preserving uncertainties, attributes and dynamic properties. An additional benefit of this approach is that continuous and discrete sub-models can interact within the same model, without having to combine different types of simulation languages, types of time handling and incongruent concepts. To facilitate the use and understanding of stochastic CSS, this paper is also intended to serve as a guide to performing consistent CSS modelling and simulation. Furthermore, an open source tool for collecting and analyzing the outputs from a stochastic CSS model and analyzing and presenting the results in statistical form is also developed and made available to the reader.
Cable and hose routing is a complex and time-consuming process that often involves several conflicting objectives. Complexity increases further when routes of multiple components are to be considered through the same space. Extensive work has been done in the area of automatic routing where few proposals optimize multiple hoses together. This paper proposes a framework for the routing of multiple pre-formed hoses in an assembly using a unique permutation process where several alternatives for each hose are generated. A combinatorial optimization process is then used to find Pareto-optimal solutions for the multi-route assembly. This is coupled with a scoring model that predicts the overall fitness of a solution based on designs previously scored by the engineer as well as an evaluation system where the engineer can score new designs found through the use of the framework to update the scoring model. The framework is evaluated using a testcase from a car manufacturer showing a severalfold time reduction compared to a strictly manual process. Considering the time savings, the proposed framework has the potential to greatly reduce the overall routing processes of hoses and cables.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.