To analyze the effect of landscape structure (viz. amount of wetlands) on the past forest fire regime in boreal Sweden, we reconstructed detailed fire histories by cross-dating fire scars in living and dead Scots pine (Pinus sylvestris L.) in two different landscape types: mire-free landscapes with a low proportion (1%2%) of mires and mire-rich landscapes with a high proportion (21%33%) of mires. Two localities were selected and at each one, adjacent mire-free and mire-rich areas of 256601 ha were sampled. Over the studied 650-year period, the two landscape types differed primarily in the fire intervals and sizes of fires. In the mire-rich landscapes, fires had frequently stopped against mire elements. The net effect was significantly longer fire intervals in the mire-rich than in the mire-free landscape (on average, 32 versus 56 years). The mire-rich areas also had a tail of very long fire intervals lacking in the mire-free areas (maximal interval 292 years). We conclude that mires can have a profound effect on both spatial and temporal patterns of forest fires in the boreal forest, but only when they are effective fuel breaks (i.e., they are wet enough) at the time the fires burn and if they truly dissect the nonmire portion of the forest landscape.
Summary
1.Forest fires are one of the main disturbance agents in boreal and temperate ecosystems. To decipher large-scale temporal and spatial patterns of past fire activity in Scandinavia, we analysed the synchronicity of dendrochoronologically reconstructed fire events in a large network of sites (n = 62; 3296 samples, 392 individual fire years) covering a wide geographical gradient (56.5-67. 0°N and 9.3-20.5°E) over AD 1400-1900. We identified large fire years (LFY) as years with regionally increased forest fire activity and located the geographical centres of climatic anomalies associated with synchronous LFY occurrence across the region, termed LFY centroids. 2. The spatial pattern of LFY centroids indicated the presence of two regions with climatically mediated synchronicity of fire occurrence, located south and north from 60°N. The return intervals of LFYs in Scandinavia followed a Weibull distribution in both regions. Intervals, however, differed: a period of 40 years would carry a 0.93 probability of LFY occurrence in the southern region, but only a 0.48 probability of LFY occurrence in the northern region. 3. Over 1420-1759, the northern region was characterized by significantly higher temporal variability in LFY occurrence than the southern region. Temporal correlation of LFYs with reconstructed average summer temperature and total precipitation was evident mainly for the northern region. LFYs in this region were associated with positive temperature and negative precipitation anomalies over Scandinavia and with colder and wetter conditions in more southern parts of the European subcontinent. 4. Synthesis. Historical patterns of the occurrence of large fire years (LFY) in Scandinavia point towards the presence of two well-defined zones with characteristic fire activity, with the geographical division at approximately 60°N. The northern and mid-boreal forests, although exhibiting lower LFY frequencies, appeared to be more sensitive to past summer climate, as compared to the southern boreal forests. This would imply that fire regimes across Scandinavia may show an asynchronous response to future climate changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.