Background: The fish pathogen Aliivibrio salmonicida is the causative agent of cold-water vibriosis in marine aquaculture. The Gram-negative bacterium causes tissue degradation, hemolysis and sepsis in vivo.
Objectives: In 2014 probiotic supplementation (Lactobacillus acidophilus and Bifidobacterium longum subspecies infantis; InfloranⓇ) was introduced as standard of care to prevent necrotizing enterocolitis (NEC) in extremely preterm infants in Norway. We aimed to evaluate the influence of probiotics and antibiotic therapy on the developing gut microbiota and antibiotic resistome in extremely preterm infants, and to compare with very preterm infants and term infants not given probiotics.Study design: A prospective, observational multicenter study in six tertiary-care neonatal units. We enrolled 76 infants; 31 probiotic-supplemented extremely preterm infants <28 weeks gestation, 35 very preterm infants 28–31 weeks gestation not given probiotics and 10 healthy full-term control infants. Taxonomic composition and collection of antibiotic resistance genes (resistome) in fecal samples, collected at 7 and 28 days and 4 months age, were analyzed using shotgun-metagenome sequencing.Results: Median (IQR) birth weight was 835 (680–945) g and 1,290 (1,150–1,445) g in preterm infants exposed and not exposed to probiotics, respectively. Two extremely preterm infants receiving probiotic developed NEC requiring surgery. At 7 days of age we found higher median relative abundance of Bifidobacterium in probiotic supplemented infants (64.7%) compared to non-supplemented preterm infants (0.0%) and term control infants (43.9%). Lactobacillus was only detected in small amounts in all groups, but the relative abundance increased up to 4 months. Extremely preterm infants receiving probiotics had also much higher antibiotic exposure, still overall microbial diversity and resistome was not different than in more mature infants at 4 weeks and 4 months.Conclusion: Probiotic supplementation may induce colonization resistance and alleviate harmful effects of antibiotics on the gut microbiota and antibiotic resistome.Clinical Trial Registration: Clinicaltrials.gov: NCT02197468. https://clinicaltrials.gov/ct2/show/NCT02197468
ObjectivesStaphylococcus haemolyticus is an emerging cause of nosocomial infections, primarily affecting immunocompromised patients. A comparative genomic analysis was performed on clinical S. haemolyticus isolates to investigate their genetic relationship and explore the coding sequences with respect to antimicrobial resistance determinants and putative hospital adaptation.MethodsWhole-genome sequencing was performed on 134 isolates of S. haemolyticus from geographically diverse origins (Belgium, 2; Germany, 10; Japan, 13; Norway, 54; Spain, 2; Switzerland, 43; UK, 9; USA, 1). Each genome was individually assembled. Protein coding sequences (CDSs) were predicted and homologous genes were categorized into three types: Type I, core genes, homologues present in all strains; Type II, unique core genes, homologues shared by only a subgroup of strains; and Type III, unique genes, strain-specific CDSs. The phylogenetic relationship between the isolates was built from variable sites in the form of single nucleotide polymorphisms (SNPs) in the core genome and used to construct a maximum likelihood phylogeny.ResultsSNPs in the genome core regions divided the isolates into one major group of 126 isolates and one minor group of isolates with highly diverse genomes. The major group was further subdivided into seven clades (A–G), of which four (A–D) encompassed isolates only from Europe. Antimicrobial multiresistance was observed in 77.7% of the collection. High levels of homologous recombination were detected in genes involved in adherence, staphylococcal host adaptation and bacterial cell communication.ConclusionsThe presence of several successful and highly resistant clones underlines the adaptive potential of this opportunistic pathogen.
Bifidobacteria are commensals that colonize the orogastrointestinal tract and rarely cause invasive human infections. However, an increasing number of bifidobacterial blood culture isolates has lately been observed in Norway. In order to investigate the pathogenicity of the Bifidobacterium species responsible for bacteremia, we studied Bifidobacterium isolates from 15 patients for whom cultures of blood obtained from 2013 to 2015 were positive. We collected clinical data and analyzed phenotypic and genotypic antibiotic susceptibility. All isolates (11 Bifidobacterium longum, 2 B. breve, and 2 B. animalis isolates) were subjected to whole-genome sequencing. The 15 patients were predominantly in the extreme lower or upper age spectrum, many were severely immunocompromised, and 11 of 15 had gastrointestinal tract-related conditions. In two elderly patients, the Bifidobacterium bacteremia caused a sepsis-like picture, interpreted as the cause of death. Most bifidobacterial isolates had low MICs (Յ0.5 mg/liter) to beta-lactam antibiotics, vancomycin, and clindamycin and relatively high MICs to ciprofloxacin and metronidazole. We performed a pangenomic comparison of invasive and noninvasive B. longum isolates based on 65 sequences available from GenBank and the sequences of 11 blood culture isolates from this study. Functional annotation identified unique genes among both invasive and noninvasive isolates of Bifidobacterium. Phylogenetic clusters of invasive isolates were identified for a subset of the B. longum subsp. longum isolates. However, there was no difference in the number of putative virulence genes between invasive and noninvasive isolates. In conclusion, Bifidobacterium has an invasive potential in the immunocompromised host and may cause a sepsis-like picture. Using comparative genomics, we could not delineate specific pathogenicity traits characterizing invasive isolates.KEYWORDS DNA sequencing, antibiotic resistance, bifidobacteria, blood culture, bloodstream infections, mass spectrometry, pangenome, probiotics, susceptibility testing, virulence factors B ifidobacteria are anaerobic, nonsporulating Gram-positive rods representing ubiquitous inhabitants of the human orogastrointestinal tract and vagina. The genus consists of more than 50 species, with only 10 species being found in humans. In breast-fed infants, bifidobacteria constitute more than 80% of the intestinal microbiota, whereas bifidobacteria comprise only 3 to 6% of the adult fecal flora (1, 2). Moreover, the species distribution is different in infants and adults; Bifidobacterium adolescentis and Bifidobacterium longum subsp. longum are the major bifidobacterial species in the
SummaryPrior to the discovery of a minimal ATP-dependent DNA ligase in Haemophilus influenzae, bacteria were thought to only possess a NAD-dependent ligase, which was involved in sealing of Okazaki fragments. We now know that a diverse range of bacterial species possess up to six of these accessory bacterial ATP-dependent DNA ligases (b-ADLs), which vary in size and enzymatic domain associations. Here we compare the domain structure of different types of b-ADLs and investigate their distribution among the bacterial domain to describe possible evolutionary trajectories that gave rise to the sequence and structural diversity of these enzymes. Previous biochemical and genetic analyses have delineated three main classes of these enzymes: Lig B, Lig C and Lig D, which appear to have descended from a common ancestor within the bacterial domain. In the present study, we delineate a fourth group of b-ADLs, Lig E, which possesses a number of unique features at the primary and tertiary structural levels. The biochemical characteristics, domain structure and inferred extracellular location sets this group apart from the other b-ADLs. The results presented here indicate that the Lig E type ligases were horizontally transferred into bacteria in a separate event from other b-ADLs possibly from a bacteriophage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.