Genetic or pharmacological alteration of the activity of the histone deacetylase 6 (HDAC6) induces a parallel alteration in cell migration. Using tubacin to block deacetylation of α-tubulin, and not other HDAC6 substrates, yielded a motility reduction equivalent to agents that block all NAD-independent HDACs. Accordingly, we investigated how the failure to deacetylate tubulin contributes to decreased motility in HDAC6-inhibited cells. Testing the hypothesis that motility is reduced because cellular adhesion is altered, we found that inhibiting HDAC6 activity towards tubulin rapidly increased total adhesion area. Next, we investigated the mechanism of the adhesion area increase. Formation of adhesions proceeded normally and cell spreading was more rapid in the absence of active HDAC6; however, photobleaching assays and adhesion breakdown showed that adhesion turnover was slower. To test the role of hyperacetylated tubulin in altering adhesion turnover, we measured microtubule dynamics in HDAC6-inhibited cells because dynamic microtubules are required to target adhesions for turnover. HDAC6 inhibition yielded a decrease in microtubule dynamics that was sufficient to decrease focal adhesion turnover. Thus, our results suggest a scenario in which the decreased dynamics of hyperacetylated microtubules in HDAC6-inhibited cells compromises their capacity to mediate the focal adhesion dynamics required for rapid cell migration.
Acute lung inflammation and injury were induced by intranasal instillation of lipopolysaccharide (LPS) in normal and type 2 nitric oxide synthase (NOS2)-deficient (NOS2 Ϫ/Ϫ ) C57BL/6 mice. LPS-induced increases in extravasated airway neutrophils and in lung lavage fluid of TNF-␣ and macrophage inflammatory protein-2 were markedly lower in NOS2 Ϫ/Ϫ than in wild-type mice, indicating that NOS2-derived nitric oxide (NO⅐) participates in inflammatory cytokine production and neutrophil recruitment. Instillation of LPS also increased total lung lavage protein and induced matrix metalloproteinase-9 and mucin 5AC, as indexes of lung epithelial injury and/or mucus hyperplasia, and increased tyrosine nitration of lung lavage proteins, a marker of oxidative injury. All these responses were less pronounced in NOS2 Ϫ/Ϫ than in wild-type mice. Inhibition of NOS activity also suppressed production of TNF-␣ and macrophage inflammatory protein-2 by LPS-stimulated mouse alveolar MH-S macrophages, and this was restored by NO⅐ donors, illustrating involvement of NO⅐ in macrophage cytokine signaling. Oligonucleotide microarray (GeneChip) analysis of global lung gene expression revealed that LPS inhalation induced a range of transcripts encoding proinflammatory cytokines and chemokines, stress-inducible factors, and other extracellular factors and suppressed mRNAs encoding certain cytoskeletal proteins and signaling proteins, responses that were generally attenuated in NOS2 Ϫ/Ϫ mice. Comparison of both mouse strains revealed altered expression of several cytoskeletal proteins, cell surface proteins, and signaling proteins in NOS2 Ϫ/Ϫ mice, changes that may partly explain the reduced responsiveness to LPS. Collectively, our results suggest that NOS2 participates in the acute inflammatory response to LPS by multiple mechanisms: involvement in proinflammatory cytokine signaling and alteration of the expression of various genes that affect inflammatory-immune responses to LPS.
Direct-current electric fields mediate motility (galvanotaxis) of many cell types. In 3T3 fibroblasts, electric fields increased the proportion, speed and cathodal directionality of motile cells. Analogous to fibroblasts' spontaneous migration, we initially hypothesized that reorientation of microtubule components modulates galvanotaxis. However, cells with intact microtubules did not reorient them in the field and cells without microtubules still migrated, albeit slowly, thus disproving the hypothesis. We next proposed that, in monolayers wounded and placed in an electric field, reorientation of microtubule organizing centers and stable, detyrosinated microtubules towards the wound edge is necessary and/or sufficient for migration. This hypothesis was negated because field exposure mediated migration of unoriented, cathode-facing cells and curtailed migration of oriented, anode-facing cells. This led us to propose that ablating microtubule detyrosination would not affect galvanotaxis. Surprisingly, preventing microtubule detyrosination increased motility speed, suggesting that detyrosination inhibits galvanotaxis. Microtubules might enhance adhesion/de-adhesion remodeling during galvanotaxis; thus, electric fields might more effectively mediate motility of cells poorly or dynamically attached to substrata. Consistent with this hypothesis, incompletely spread cells migrated more rapidly than fully spread cells. Also, overexpression of PAK4, a Cdc42-activated kinase that decreases adhesion, enhanced galvanotaxis speed, whereas its lack decreased speed. Thus, electric fields mediate fibroblast migration via participation of microtubules and adhesive components, but their participation differs from that during spontaneous motility.
Cigarette smoking is known to contribute to inflammatory diseases of the respiratory tract by promoting recruitment of inflammatory-immune cells such as neutrophils and perhaps by altering neutrophil functional properties. We investigated whether acrolein, a toxic unsaturated aldehyde found in cigarette smoke, could directly affect neutrophil function. Exposure of freshly isolated human neutrophils to acrolein markedly inhibited spontaneous neutrophil apoptosis as indicated by loss of membrane asymmetry and DNA fragmentation and induced increased neutrophil production of the chemokine interleukin-8 (IL-8). Acrolein (1--50 microM) was found to induce marked activation of extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinases (MAPKs), and inhibition of p38 MAPK activation by SB-203580 prevented acrolein-induced IL-8 release. However, inhibition of either ERK or p38 MAPK did not affect acrolein-dependent inhibition of apoptosis. Acrolein exposure prevented the activation of caspase-3, a crucial step in the execution of neutrophil apoptosis, presumably by direct inhibition of the enzyme. Our results indicate that acrolein may contribute to smoke-induced inflammatory processes in the lung by increasing neutrophil recruitment and reducing neutrophil clearance by apoptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.