Centronuclear myopathies are characterized by muscle weakness and abnormal centralization of nuclei in muscle fibers not secondary to regeneration. The severe neonatal X-linked form (myotubular myopathy) is due to mutations in the phosphoinositide phosphatase myotubularin (MTM1), whereas mutations in dynamin 2 (DNM2) have been found in some autosomal dominant cases. By direct sequencing of functional candidate genes, we identified homozygous mutations in amphiphysin 2 (BIN1) in three families with autosomal recessive inheritance. Two missense mutations affecting the BAR (Bin1/amphiphysin/RVS167) domain disrupt its membrane tubulation properties in transfected cells, and a partial truncation of the C-terminal SH3 domain abrogates the interaction with DNM2 and its recruitment to the membrane tubules. Our results suggest that mutations in BIN1 cause centronuclear myopathy by interfering with remodeling of T tubules and/or endocytic membranes, and that the functional interaction between BIN1 and DNM2 is necessary for normal muscle function and positioning of nuclei.
BackgroundDown syndrome, characterized by an extra chromosome 21 is the most common genetic cause for congenital malformations and learning disability. It is well known that the extra chromosome 21 most often originates from the mother, the incidence increases with maternal age, there may be aberrant maternal chromosome 21 recombination and there is a higher recurrence in young women. In spite of intensive efforts to understand the underlying reason(s) for these characteristics, the origin still remains unknown. We hypothesize that maternal trisomy 21 ovarian mosaicism might provide the major causative factor.ResultsWe used fluorescence in situ hybridization (FISH) with two chromosome 21-specific probes to determine the copy number of chromosome 21 in ovarian cells from eight female foetuses at gestational age 14–22 weeks. All eight phenotypically normal female foetuses were found to be mosaics, containing ovarian cells with an extra chromosome 21. Trisomy 21 occurred with about the same frequency in cells that had entered meiosis as in pre-meiotic and ovarian mesenchymal stroma cells.ConclusionWe suggest that most normal female foetuses are trisomy 21 ovarian mosaics and the maternal age effect is caused by differential selection of these cells during foetal and postnatal development until ovulation. The exceptional occurrence of high-grade ovarian mosaicism may explain why some women have a child with Down syndrome already at young age as well as the associated increased incidence at subsequent conceptions. We also propose that our findings may explain the aberrant maternal recombination patterns previously found by family linkage analysis.
Background We report the findings from 4437 individuals (3219 patients and 1218 relatives) who have been analyzed by whole genome sequencing (WGS) at the Genomic Medicine Center Karolinska-Rare Diseases (GMCK-RD) since mid-2015. GMCK-RD represents a long-term collaborative initiative between Karolinska University Hospital and Science for Life Laboratory to establish advanced, genomics-based diagnostics in the Stockholm healthcare setting. Methods Our analysis covers detection and interpretation of SNVs, INDELs, uniparental disomy, CNVs, balanced structural variants, and short tandem repeat expansions. Visualization of results for clinical interpretation is carried out in Scout—a custom-developed decision support system. Results from both singleton (84%) and trio/family (16%) analyses are reported. Variant interpretation is done by 15 expert teams at the hospital involving staff from three clinics. For patients with complex phenotypes, data is shared between the teams. Results Overall, 40% of the patients received a molecular diagnosis ranging from 19 to 54% for specific disease groups. There was heterogeneity regarding causative genes (n = 754) with some of the most common ones being COL2A1 (n = 12; skeletal dysplasia), SCN1A (n = 8; epilepsy), and TNFRSF13B (n = 4; inborn errors of immunity). Some causative variants were recurrent, including previously known founder mutations, some novel mutations, and recurrent de novo mutations. Overall, GMCK-RD has resulted in a large number of patients receiving specific molecular diagnoses. Furthermore, negative cases have been included in research studies that have resulted in the discovery of 17 published, novel disease-causing genes. To facilitate the discovery of new disease genes, GMCK-RD has joined international data sharing initiatives, including ClinVar, UDNI, Beacon, and MatchMaker Exchange. Conclusions Clinical WGS at GMCK-RD has provided molecular diagnoses to over 1200 individuals with a broad range of rare diseases. Consolidation and spread of this clinical-academic partnership will enable large-scale national collaboration.
This is the first meta-analysis using GRADE that shows that NIPT performs well as a screen for trisomy 21 in a general pregnant population. Although the false positive rate is low compared with first trimester combined screening, women should still be advised to confirm a positive result by invasive testing if termination of pregnancy is under consideration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.