& Key message In Mexican oaks, germination increases with acorn fresh weight across oak species. Within species, these relationships are stronger in red oaks than in white oaks. In both oak groups, fresh weight of acorns increases with their dry biomass. & Context Mexican oaks are phylogenetically grouped in red and white oaks. White oaks produce heavier acorns than red ones, but no studies have assessed whether this leads to different germination patterns. & Aims This study was aimed to determine the influence of the fresh weight of acorns on their germination. & Methods Acorns of red and white oaks were hydrated, weighed, and sowed under greenhouse conditions to assess whether their fresh weight was related with germination. We also assessed whether fresh weight of acorns was related with their dry biomass and/or water accumulation capability. & Results Hydrated acorns of white oaks were heavier and germinated faster than those of red oaks. Germination percentages increased with acorn fresh weight across oak species. Within species, germination probability increased with acorn fresh weight, but these relationships were more marked in red oaks. Germination speed decreased with acorn fresh weight in red oaks, but these relationships were not found in white oaks. Fresh weight was positively related with acorn dry biomass in all oak species, but it was not related with water content. & Conclusion Increasing acorn fresh weight enhances germination across oak species. Within species, however, this trait seems to have more influence in red than in white oaks.
Background and Aims: Tree recruitment in seasonally dry forests occurs during the rainy season. However, higher temperatures and reduced rainfalls are expected in these ecosystems because of climate change. These changes could induce drought conditions during the rainy season and affect tree recruitment. Plants subjected to thermal or water stress often display morphological and physiological shifts addressed to prioritize their survival. If recently emerged tree seedlings display these responses, this could improve their development during the rainy season and increase their survival chances. Our aim was to test whether recently emerged oak seedlings display these responses.Methods: We performed a field experiment with Quercus ariifolia, an oak species endemic to seasonally dry forests of central Mexico. At the beginning of the rainy season (September 2016), we sowed acorns of this species in control plots under the current climate and plots in which climate change was simulated by increasing temperature and reducing rainfall (CCS plots). Seedling emergence and survival were monitored every seven days during the rainy season (until January 2017). At the end of the experiment, we measured several functional traits on surviving seedlings and compared them between controls and CCS plots.Key results: Higher temperature and lower rainfall generated water shortage conditions in CCS plots. This did not affect emergence of seedlings but reduced their survival. Seedlings that survived in CCS plots displayed shifts in their functional traits, which matched with those of plants subjected to thermal and water stress.Conclusions: Our results suggest that climate change can increase the extinction risk of Q. ariifolia in seasonally dry forest of Mexico by reducing the survival of its offspring. Nevertheless, the results also suggest that seedlings developed under climate change conditions can display functional shifts that could confer them tolerance to increased drought.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.