BackgroundInorganic arsenic is a ubiquitous environmental carcinogen affecting millions of people worldwide. Evolving theory predicts that normal stem cells (NSCs) are transformed into cancer stem cells (CSCs) that then drive oncogenesis. In humans, arsenic is carcinogenic in the urogenital system (UGS), including the bladder and potentially the prostate, whereas in mice arsenic induces multiorgan UGS cancers, indicating that UGS NSCs may represent targets for carcinogenic initiation. However, proof of emergence of CSCs induced by arsenic in a stem cell population is not available.MethodsWe continuously exposed the human prostate epithelial stem/progenitor cell line WPE-stem to an environmentally relevant level of arsenic (5 μM) in vitro and determined the acquired cancer phenotype.ResultsWPE-stem cells rapidly acquired a malignant CSC-like phenotype by 18 weeks of exposure, becoming highly invasive, losing contact inhibition, and hypersecreting matrix metalloproteinase-9. When hetero-transplanted, these cells (designated As-CSC) formed highly pleomorphic, aggressive tumors with immature epithelial- and mesenchymal-like cells, suggesting a highly pluripotent cell of origin. Consistent with tumor-derived CSCs, As-CSCs formed abundant free-floating spheres enriched in CSC-like cells, as confirmed by molecular analysis and the fact that only these floating cells formed xenograft tumors. An early loss of NSC self-renewal gene expression (p63, ABCG2, BMI-1, SHH, OCT-4, NOTCH-1) during arsenite exposure was subsequently reversed as the tumor suppressor gene PTEN was progressively suppressed and the CSC-like phenotype acquired.ConclusionsArsenite transforms prostate epithelial stem/progenitor cells into CSC-like cells, indicating that it can produce CSCs from a model NSC population.
Arsenic is a carcinogen with transplacental activity that can affect human skin stem cell population dynamics in vitro by blocking exit into differentiation pathways. Keratinocyte stem cells (KSC) are probably a key target in skin carcinogenesis. Thus, we tested the effects of fetal arsenic exposure in Tg.AC mice, a strain sensitive to skin carcinogenesis via activation of the v-Ha-ras transgene likely in KSCs. After fetal arsenic treatment, offspring received topical 12-O-tetradecanoyl phorbol-13-acetate (TPA) through adulthood. Arsenic alone had no effect, whereas TPA alone induced papillomas and squamous cell carcinomas (SCC). However, fetal arsenic treatment before TPA increased SCC multiplicity 3-fold more than TPA alone, and these SCCs were much more aggressive (invasive, etc.). Tumor v-Ha-ras levels were 3-fold higher with arsenic plus TPA than TPA alone, and v-Ha-ras was overexpressed early on in arsenic-treated fetal skin. CD34, considered a marker for both KSCs and skin cancer stem cells, and Rac1, a key gene stimulating KSC self-renewal, were greatly increased in tumors produced by arsenic plus TPA exposure versus TPA alone, and both were elevated in arsenic-treated fetal skin. Greatly increased numbers of CD34-positive probable cancer stem cells and marked overexpression of RAC1 protein occurred in tumors induced by arsenic plus TPA compared with TPA alone. Thus, fetal arsenic exposure, although by itself oncogenically inactive in skin, facilitated cancer response in association with distorted skin tumor stem cell signaling and population dynamics, implicating stem cells as a target of arsenic in the fetal basis of skin cancer in adulthood. [Cancer Res 2008;68(20):8278-85]
Background:Exposure to inorganic and organic arsenic compounds is a major public health problem that affects hundreds of millions of people worldwide. Exposure to arsenic is associated with cancer and noncancer effects in nearly every organ in the body, and evidence is mounting for health effects at lower levels of arsenic exposure than previously thought. Building from a tremendous knowledge base with > 1,000 scientific papers published annually with “arsenic” in the title, the question becomes, what questions would best drive future research directions?Objectives:The objective is to discuss emerging issues in arsenic research and identify data gaps across disciplines.Methods:The National Institutes of Health’s National Institute of Environmental Health Sciences Superfund Research Program convened a workshop to identify emerging issues and research needs to address the multi-faceted challenges related to arsenic and environmental health. This review summarizes information captured during the workshop.Discussion:More information about aggregate exposure to arsenic is needed, including the amount and forms of arsenic found in foods. New strategies for mitigating arsenic exposures and related health effects range from engineered filtering systems to phytogenetics and nutritional interventions. Furthermore, integration of omics data with mechanistic and epidemiological data is a key step toward the goal of linking biomarkers of exposure and susceptibility to disease mechanisms and outcomes.Conclusions:Promising research strategies and technologies for arsenic exposure and adverse health effect mitigation are being pursued, and future research is moving toward deeper collaborations and integration of information across disciplines to address data gaps.Citation:Carlin DJ, Naujokas MF, Bradham KD, Cowden J, Heacock M, Henry HF, Lee JS, Thomas DJ, Thompson C, Tokar EJ, Waalkes MP, Birnbaum LS, Suk WA. 2016. Arsenic and environmental health: state of the science and future research opportunities. Environ Health Perspect 124:890–899; http://dx.doi.org/10.1289/ehp.1510209
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.