BackgroundAsynchronous learning is gaining popularity. Data are limited regarding this learning method in medical students rotating in emergency medicine (EM). In EM, faculty time is limited to give in-person lectures. The authors sought to create an online curriculum that students could utilize as an additional learning modality.ObjectiveThe goal was to evaluate effectiveness, participation, and preference for this mode of learning.MethodsWe developed five online, narrated PowerPoint presentations. After orientation, access to the online curriculum was provided to the students, which they could review at their leisure.ResultsOne hundred and seven fourth-year medical students participated. They reported the curriculum to be of high quality. Pretest scores were similar for those that viewed all lectures – compliant group (CG) (9.5 [CI 4.8–14.1]) and those that did not view any – non-compliant group (NCG) (9.6 [CI 5.9–13.4]). There was no statistical significant difference in posttest scores between the groups although there was improvement overall: CG 14.6 (CI 6.9–22.1); NCG 11.4 (CI 5.7–17.1). A majority (69.2%) favored inclusion of asynchronous learning, but less than a quarter (22.4%) reported viewing all five modules and more than a third (36.4%) viewed none.ConclusionDespite student-expressed preference for an online curriculum, they used the online resource less than expected. This should give pause to educators looking to convert core EM topics to an online format. However, when high-quality online lectures are utilized as a learning tool, this study demonstrates that they had neither a positive nor a negative impact on test scores.
Although the bys-like family of genes has been conserved from yeast to humans, it is not apparent to what extent the function of Bys-like proteins has been conserved across phylogenetic groups. Human Bystin is thought to function in a novel cell adhesion complex involved in embryo implantation. The product of the yeast bys-like gene, Enp1, is nuclear and has a role in pre-ribosomal RNA (pre-rRNA) splicing and ribosome biogenesis. To gain insight into the function of the Drosophila melanogaster bys-like family member, termed bys, we examined bys mRNA expression and the localization of Bys protein. In embryos, bys mRNA is expressed in a tissue-specific pattern during gastrulation. In the larval wing imaginal disc, bys mRNA is expressed in the ventral and dorsal regions of the wing pouch, regions that give rise to epithelia that adhere to one another after the wing disc everts. The bys mRNA expression patterns could be interpreted as being consistent with a role for Bys in events requiring cell-cell interactions. However, embryonic bys mRNA expression patterns mirror those of genes that are potential targets of the growth regulator Myc and encode nucleolar proteins implicated in cell growth. Additionally, in Schneider line 2 (S2) cells, an epitope-tagged Bys protein is localized to the nucleus, suggesting that Drosophila Bys function may be conserved with that of yeast Enp1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.