The tryptophan (trp)-catabolizing enzyme indolamine 2,3-dioxygenase (IDO) is induced by the T helper 1 (Th 1) cytokine IFN-gamma during infections in various tissues including the brain. Recent studies demonstrated an immune modulatory function of this enzyme, since IDO-mediated depletion of trp hinders T cell proliferation, while its inhibition by 1-methyl-tryptophan (1-Mt) induces breakdown of immune tolerance in the placenta, leading to rejection of allogeneic concepti. Here, we tested IDO expression and function during experimental autoimmune encephalomyelitis (EAE) actively induced in adult SJL mice by immunization with PLP139-151. IDO activity (determined by HPLC analysis of the kynurenine/tryptophan ratio) was increased in the spleen during the preclinical phase, and within the brain and spinal cord at the onset of symptoms. Immunocytochemistry revealed macrophages/activated microglia expressing IDO during EAE and in vitro experiments confirmed IDO induction in microglia upon IFN-gamma treatment with synergistic effects of TNF-alpha. Inhibition of IDO by systemic administration of 1-Mt at clinical onset significantly exacerbated disease scores. From these data, it is tempting to speculate that IFN-gamma from encephalitogenic Th 1 cells induces local IDO expression, thereby initiating a negative feedback loop which may underlie the self-limitation of autoimmune inflammation during EAE and multiple sclerosis.
The let-7 miRNA regulates developmental timing in C. elegans and is an important paradigm for investigations of miRNA functions in mammalian development. We have examined the role of miRNA precursor processing in the temporal control and lineage specificity of the let-7 miRNA. In situ hybridization (ISH) in E9.5 mouse embryos revealed early induction of let-7 in the developing central nervous system. The expression pattern of three let-7 family members closely resembled that of the brain-enriched miRNAs mir-124, mir-125 and mir-128. Comparison of primary, precursor, and mature let-7 RNA levels during both embryonic brain development and neural differentiation of embryonic stem cells and embryocarcinoma (EC) cells suggest post-transcriptional regulation of let-7 accumulation. Reflecting these results, let-7 sensor constructs were strongly down-regulated during neural differentiation of EC cells and displayed lineage specificity in primary cells. Neural differentiation of EC cells was accompanied by an increase in let-7 precursor processing activity in vitro. Furthermore, undifferentiated and differentiated cells contained distinct precursor RNA binding complexes. A neuron-enhanced binding complex was shown by antibody challenge to contain the miRNA pathway proteins Argonaute1 and FMRP. Developmental regulation of the processing pathway correlates with differential localization of the proteins Argonaute, FMRP, MOV10, and TNRC6B in self-renewing stem cells and neurons.
Although drainage pathways of soluble antigens from brain to cervical lymph nodes have been well established, there is no direct evidence for similar routes of leukocytes leaving the central nervous system. We developed a protocol allowing the cross-sectioning of an entire head-neck preparation while preserving the signal of the GFP. We monitored how GFP-expressing CD4 T lymphocytes injected into the entorhinal cortex after lesion or the lateral ventricle of unlesioned C57/bl6 mice reach cervical lymph nodes. Irrespective of the injection site, we demonstrate their passage through the cribroid plate, appearance in the nasal mucosa, and specific accumulation in one of the cervical lymph nodes.
The tryptophan-catabolizing enzyme indoleamine-2,3-dioxygenase (IDO) initiates the first and ratelimiting step of the kynurenine pathway. It is induced by proinflammatory cytokines such as interferon-β and interferon-γ and has established effects in the control of intracellular parasites. The recent detection of its decisive function in immune tolerance at the maternal-fetal interface stimulated various studies unraveling its regulatory effect on T cells in many pathologies. In the brain, IDO can be induced in microglia by interferon-γ-producing T helper (Th) 1 cells, thereby initiating a negative feedback loop which downmodulates neuroinflammation in experimental autoimmune encephalomyelitis (EAE), the animal model of multiple sclerosis (MS). This protective effect could to be counteracted by the production of neurotoxic metabolites of the kynurenine pathway such as quinolinic acid, which are produced upon IDO induction. Some metabolites of the kynurenine pathway can pass the blood-brain barrier and thus could act as neurotoxins, e.g., during systemic infection. In this paper, we give a brief overview on established immune regulatory functions of IDO, review recent data on IDO expression in the brain, and propose that autoimmune neuroinflammation and the increasingly appreciated neuronal damage in MS are linked by Th1-mediated IDO induction through subsequent synthesis of toxic metabolites of tryptophan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.