It is well known that top-down expectations affect perceptual processes. Yet, remarkably little is known about the relationship between expectations and conscious awareness We address three crucial questions that are outstanding: 1) How do predictions affect the likelihood of conscious stimulus perception?; 2) Does the brain register violations of predictions nonconsciously?; and 3) Do predictions need to be conscious to influence perceptual decisions? We performed three experiments in which we manipulated stimulus predictability within the attentional blink paradigm, while combining visual psychophysics with electrophysiological recordings. We found that valid stimulus expectations increase the likelihood of conscious access of stimuli. Furthermore, our findings suggest a clear dissociation in the interaction between expectations and consciousness: conscious awareness seems crucial for the implementation of top-down predictions, but not for the bottom-up generation of stimulus-evoked prediction errors. These results constrain and update influential theories about the role of consciousness in the predictive brain.. CC-BY-NC-ND 4.0 International license not peer-reviewed) is the author/funder. It is made available under a The copyright holder for this preprint (which was . http://dx.doi.org/10.1101/151019 doi: bioRxiv preprint first posted online Jun. 16, 2017; 3 A rapidly growing body of work indicates that sensory processing is strongly influenced by the expectations that we have about likely states of the world. Such expectations are shaped by the immediate environment or context in which we are operating, but also by learning, past experience and our genetic makeup [1][2][3] .Expectations are typically thought to originate from higher-level brain regions, such as the prefrontal cortex, which may guide information processing in lower-level sensory regions via top-down (descending) projections 4,5 . In this framework, what we consciously see is proposed to be strongly influenced by the brain's expectations about, or its best guess of, the outside world 6,7 . Initial studies support a tight relationship between expectations and conscious perception. For example, it has been shown that objects that are unexpected in a particular visual scene (e.g. a hammer in the kitchen) are detected more slowly than expected objects (e.g. a knife in the kitchen) 8 . Further, a correct prediction about the nature of an upcoming stimulus (e.g. the orientation of a Gabor) improves its discrimination 9 and sharpens its neural representation 10. The brain can thus use predictive information in the environment to build expectations of stimulus frequency or conditional probabilities to modify subsequent sensory information processing and perception. These ideas have been formalized in several theoretical models, such as predictive coding and sequential sampling models 3,11,12 . Although these frameworks are attractive in their simplicity and are rapidly growing in scientific stature, how exactly predictions shape conscious ...
Subjective experience can be influenced by top-down factors, such as expectations and stimulus relevance. Recently, it has been shown that expectations can enhance the likelihood that a stimulus is consciously reported, but the neural mechanisms supporting this enhancement are still unclear. We manipulated stimulus expectations within the attentional blink (AB) paradigm using letters and combined visual psychophysics with magnetoencephalographic (MEG) recordings to investigate whether prior expectations may enhance conscious access by sharpening stimulus-specific neural representations. We further explored how stimulus-specific neural activity patterns are affected by the factors expectation, stimulus relevance and conscious report. First, we show that valid expectations about the identity of an upcoming stimulus increase the likelihood that it is consciously reported. Second, using a series of multivariate decoding analyses, we show that the identity of letters presented in and out of the AB can be reliably decoded from MEG data. Third, we show that early sensory stimulus-specific neural representations are similar for reported and missed target letters in the AB task (active report required) and an oddball task in which the letter was clearly presented but its identity was task-irrelevant. However, later sustained and stable stimulus-specific representations were uniquely observed when target letters were consciously reported (decision-dependent signal). Fourth, we show that global pre-stimulus neural activity biased perceptual decisions for a ‘seen’ response. Fifth and last, no evidence was obtained for the sharpening of sensory representations by top-down expectations. We discuss these findings in light of emerging models of perception and conscious report highlighting the role of expectations and stimulus relevance.
It is well known that top-down expectations affect perceptual processes. Yet, remarkably little is known about the relationship between expectations and conscious awareness. We address three crucial outstanding questions: (1) how do expectations affect the likelihood of conscious stimulus perception?; (2) does the brain register violations of expectations nonconsciously?; and (3) do expectations need to be conscious to influence perceptual decisions? Using human participants, we performed three experiments in which we manipulated stimulus predictability within the attentional blink paradigm, while combining visual psychophysics with electrophysiological recordings. We found that valid stimulus expectations increase the likelihood of conscious access of stimuli. Furthermore, our findings suggest a clear dissociation in the interaction between expectations and consciousness: conscious awareness seems crucial for the implementation of top-down expectations, but not for the generation of bottom-up stimulus-evoked prediction errors. These results constrain and update influential theories about the role of consciousness in the predictive brain. While the relationship between expectations and conscious awareness plays a major role in many prediction-based theories of brain functioning, thus far few empirical studies have examined this relationship. Here, we address this gap in knowledge in a set of three experiments. Our results suggest that the effect of expectations on conscious awareness varies between different steps of the hierarchy of predictive processing. While the active use of top-down expectations for perceptual decisions requires conscious awareness, prediction errors can be triggered outside of conscious awareness. These results constrain and update influential theories about the role of consciousness in the predictive brain.
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Previous studies suggest that linguistic material can modulate visual perception, but it is unclear at which level of processing these interactions occur. Here we aim to dissociate between two competing models of language–perception interactions: a feed-forward and a feedback model. We capitalized on the fact that the models make different predictions on the role of feedback. We presented unmasked (aware) or masked (unaware) words implying motion (e.g. “rise,” “fall”), directly preceding an upward or downward visual motion stimulus. Crucially, masking leaves intact feed-forward information processing from low- to high-level regions, whereas it abolishes subsequent feedback. Under this condition, participants remained faster and more accurate when the direction implied by the motion word was congruent with the direction of the visual motion stimulus. This suggests that language–perception interactions are driven by the feed-forward convergence of linguistic and perceptual information at higher-level conceptual and decision stages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.