Mammalian thioredoxin reductase (TR) contains a rare selenocysteine (Sec) residue in a conserved redox active tetrapeptide of sequence Gly-Cys1-Sec2-Gly. The high chemical reactivity of the Sec residue is thought to confer broad substrate specificity to the enzyme. In addition to utilizing thioredoxin (Trx) as a substrate, other substrates are: protein disulfide isomerase, glutaredoxin, glutathione peroxidase, NK-lysin/granulsin, HIV Tat protein, H2O2, lipid hydroperoxides, vitamin K, ubiquinone, juglone, ninhydrin, alloxan, dehydroascorbate, DTNB, lipoic acid/lipoamide, S-nitrosoglutathione, selenodiglutathione, selenite, methylseleninate, and selenocystine. Here we show that the Cys2-mutant enzyme or the N- terminal reaction center alone can reduce Se-containing substrates selenocystine and selenite with only slightly less activity than the wild type enzyme, in stark contrast to when Trx is used as the substrate when the enzyme suffers a 175- to 550-fold reduction in kcat. Our data supports the use of alternative mechanistic pathways for the Se-containing substrates that bypass a critical ring-forming step when Trx is the substrate. We also show that lipoic acid can be reduced through a Sec-independent mechanism that involves the N-terminal reaction center. These results show that the broad substrate specificity of the mammalian enzyme is not due to the presence of the rare Sec residue, but is due to the catalytic power of the N-terminal reaction center. We hypothesize that the N-terminal reaction center can reduce substrates: (i) with good leaving groups such as DTNB, (ii) that are highly electrophilic such as selenite, (iii) or are activated by strain such as lipoic acid/lipoamide. We also show that the absence of Sec only changed the IC50 for aurothioglucose by a factor of 1.7 in the full-length mammalian enzyme (83 nM to 142 nM), but surprisingly the truncated enzyme showed much stronger inhibition (25 nM). This contrasts with auranofin, where the absence of Sec more strongly perturbed inhibition.
This review covers three different chemical explanations that could account for the requirement of selenium in the form of selenocysteine in the active site of mammalian thioredoxin reductase. These views are the following: (1) the traditional view of selenocysteine as a superior nucleophile relative to cysteine, (2) the superior leaving group ability of a selenol relative to a thiol due to its significantly lower pK a and, (3) the superior ability of selenium to accept electrons (electrophilicity) relative to sulfur. We term these chemical explanations as the "chemicoenzymatic" function of selenium in an enzyme. We formally define the chemico-enzymatic function of selenium as its specific chemical property that allows a selenoenzyme to catalyze its individual reaction. However we, and others, question whether selenocysteine is chemically necessary to catalyze an enzymatic reaction since cysteine-homologs of selenocysteine-containing enzymes catalyze their specific enzymatic reactions with high catalytic efficiency. There must be a unique chemical reason for the presence of selenocysteine in enzymes that explains the biological pressure on the genome to maintain the complex selenocysteine-insertion machinery. We term this biological pressure the "chemico-biological" function of selenocysteine. We discuss evidence that this chemico-biological function is the ability of selenoenzymes to resist inactivation by irreversible oxidation. The way in which selenocysteine confers resistance to oxidation could be due to the superior ability of the oxidized form of selenocysteine (Sec-SeO 2 − , seleninic acid) to be recycled back to its parent form (Sec-SeH, selenocysteine) in comparison to the same cycling of cysteine-sulfinic acid to cysteine (Cys-SO 2 − to Cys-SH).
Mammalian thioredoxin reductase (TR) is a selenocysteine (Sec)-containing homodimeric pyridine nucleotide oxidoreductase which catalyzes the reduction of oxidized thioredoxin. We have previously demonstrated the full-length mitochondrial mammalian TR (mTR3) enzyme to be resistant to inactivation from exposure to 50 mM H2O2. Because a Sec residue oxidizes more rapidly than a cysteine (Cys) residue, it has been previously thought that Sec-containing enzymes are “sensitive to oxidation” compared to Cys-orthologs. Here we show for the first time a direct comparison of the abilities of Sec-containing mTR3 and the Cys-ortholog from D. melanogaster (DmTR) to resist inactivation by oxidation from a variety of oxidants including H2O2, hydroxyl radical, peroxynitrite, hypochlorous acid, hypobromous acid, and hypothiocyanous acid. The results show that the Sec-containing TR is far superior to the Cys-ortholog TR in resisting inactivation by oxidation. To further test our hypothesis that the use of Sec confers strong resistance to inactivation by oxidation, we constructed a chimeric enzyme in which we replaced the active site Cys nucleophile of DmTR with a Sec residue using semisynthesis. The chimeric Sec-containing enzyme has similar ability to resist inactivation by oxidation as the wild type Sec-containing TR from mouse mitochondria. The use of Sec in the chimeric enzyme “rescued” the enzyme from oxidant-induced inactivation for all of the oxidants tested in this study, in direct contrast to previous understanding. We discuss two possibilities for this rescue effect from inactivation under identical conditions of oxidative stress: (i) Sec resists over-oxidation and inactivation, whereas a Cys residue can be permanently over-oxidized to the sulfinic acid form, and (ii) Sec protects the body of the enzyme from harmful oxidation by allowing the enzyme to metabolize (turnover) various oxidants much better than a Cys-containing TR.
A vicinal disulfide ring (VDR) results from disulfide bond formation between two adjacent cysteine residues. This 8-membered ring is a rare motif in protein structures and is functionally important to those few proteins that posses it. This article focuses on the construction of strained and unstrained VDR mimics, discernment of the preferred conformation of these mimics, and the determination of their respective disulfide redox potentials.
Mammalian thioredoxin reductase (TR) is a pyridine nucleotide disulfide oxidoreductase that uses the rare amino acid selenocysteine (Sec) in place of the more commonly used amino acid cysteine (Cys) in the redoxactive tetrapeptide Gly-Cys-Sec-Gly motif to catalyze thiol/disulfide exchange reactions. Sec can accelerate the rate of these exchange reactions by being: (i) a better nucleophile than Cys, (ii) a better electrophile than Cys, (iii) a better leaving group than Cys, or (iv) by using a combination of all three of these factors, being more chemically reactive than Cys. The role of the selenolate as a nucleophile in the reaction mechanism was recently demonstrated by creating a mutant of human thioredoxin reductase-1 in which the Cys497-Sec498 dyad of the C-terminal redox center was mutated to either a Ser497-Cys498 dyad or a Cys497-Ser498 dyad. Both mutant enzymes were incubated with human thioredoxin (Trx) in order to determine which mutant formed a mixed disulfide bond complex. Only the mutant containing the Ser497-Cys498 dyad formed a complex and this structure has been solved by X-ray crystallography [Fritz-Wolf, K., Kehr, S., Stumpf, M., Rahlfs, S., and Becker, K. (2011) Crystal structure of the human thioredoxin reductase-thioredoxin complex, Nat Commun 2, 383.] This experimental observation most likely means that the selenolate is the initial attacking nucleophile onto the disulfide bond of Trx because a complex only resulted when Cys was present in the second position of the dyad. As a nucleophile, the selenolate of Sec helps to accelerate the rate of this exchange reaction relative to Cys in the Sec → Cys mutant enzyme. Another thiol/disulfide exchange reaction that occurs in the enzymatic cycle of the enzyme is the transfer of electrons from the thiolate of the interchange Cys residue of the N-terminal redox center to the 8-membered selenosulfide ring of the C-terminal redox center. The selenium atom of the selenosulfide could accelerate this exchange reaction by being a good leaving group (attack at the sulfur atom), or by being a good electrophile (attack at the selenium atom). Here we provide strong evidence that the selenium atom is attacked in this exchange step. This was shown by creating a mutant enzyme containing a Gly-Gly-Seccoo- motif that had 0.5% of the activity of the wild type enzyme. This mutant lacks the adjacent, resolving Cys residue, which acts by attacking the mixed selenosulfide bond that occurs between enzyme and substrate. A similar result was obtained when Sec was replaced with homocysteine. These results highlight the role of selenium as an electron acceptor in the catalytic mechanism of thioredoxin reductase as well as its established role as an electron donor to the substrate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.