We experimentally show an all-optical wavelength conversion of 8 × 32-GBd single-polarization 16QAM signals using a silicon nano-rib waveguide. The application of reverse biasing of the p-i-n junction of the waveguide allows a conversion efficiency of -8.5 dB with a measured 3-dB optical bandwidth of about 40 nm. Using digital coherent reception, it is shown that the receiver optical signal-to-noise ratio penalty, at a bit-error ratio of 1 × 10, of the wavelength-converted signals over all eight channels was less than 0.6 dB with reference to their respective back-to-back signal channels.
A polarization-diversity loop with a silicon waveguide with a lateral p-in diode as a nonlinear medium is used to realize polarization insensitive four-wave mixing. Wavelength conversion of seven dual-polarization 16-quadrature amplitude modulation (QAM) signals at 16 GBd is demonstrated with an optical signal-to-noise ratio penalty below 0.7 dB. High-quality converted signals are generated thanks to the low polarization dependence (≤0.5 dB) and the high conversion efficiency (CE) achievable. The strong Kerr nonlinearity in silicon and the decrease of detrimental free-carrier absorption due to the reverse-biased p-in diode are key in ensuring high CE levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.