The fragile nature of most enzymes is a major hindrance to their use in industrial processes. Herein, we describe a synthetic chemical strategy to produce hybrid organic/inorganic nanobiocatalysts; it exploits the self-assembly of silane building blocks at the surface of enzymes to grow an organosilica layer, of controlled thickness, that fully shields the enzyme. Remarkably, the enzyme triggers a rearrangement of this organosilica layer into a significantly soft structure. We demonstrate that this change in stiffness correlates with the biocatalytic turnover rate, and that the organosilica layer shields the enzyme in a soft environment with a markedly enhanced resistance to denaturing stresses.
The removal of emerging organic contaminants from municipal wastewater poses a major challenge unsatisfactorily addressed by present wastewater treatment processes. Enzyme-catalyzed transformation of emerging organic contaminants (EOC) has been proposed as a possible solution to this major environmental issue more than a decade ago. Especially, laccases gained interest in this context in recent years due to their broad substrate range and since they only need molecular oxygen as a cosubstrate. In order to ensure the stability of the enzymes and allow their retention and reuse, either immobilization or insolubilization of the biocatalysts seems to be the prerequisite for continuous wastewater treatment applications. The present review summarizes the research conducted on EOC transformation with laccases and presents an overview of the possible immobilization techniques. The goal is to assess the state of the art and identify the next necessary steps that have to be undertaken in order to implement laccases as a tertiary wastewater treatment process in sewage treatment plants.
The removal of recalcitrant chemicals in wastewater treatment systems is an increasingly relevant issue in industrialized countries. The elimination of persistent xenobiotics such as endocrine-disrupting chemicals (EDCs) emitted by municipal and industrial sewage treatment plants remains an unsolved challenge. The existing efficacious physico-chemical methods, such as advanced oxidation processes, are resource-intensive technologies. In this work, we investigated the possibility to remove phenolic EDCs [i.e., bisphenol A (BPA)] by means of a less energy and chemical consuming technology. To that end, cheap and resistant oxidative enzymes, i.e., laccases, were immobilized onto silica nanoparticles. The resulting nanobiocatalyst produced at kilogram scale was demonstrated to possess a broad substrate spectrum regarding the degradation of recalcitrant pollutants. This nanobiocatalyst was applied in a membrane reactor at technical scale for tertiary wastewater treatment. The system efficiently removed BPA and the results of long-term field tests illustrated the potential of fumed silica nanoparticles/laccase composites for advanced biological wastewater treatment.
Immobilization is an important method to increase enzyme stability and allow enzyme reuse. One interesting application in the field of environmental biotechnology is the immobilization of laccase to eliminate phenolic contaminants via oxidation. Fumed silica nanoparticles have interesting potential as support material for laccase immobilization via sorption-assisted immobilization in the perspective of applications such as the elimination of micropollutants in aqueous phases. Based on these facts, the present work aimed to formulate laccase-nanoparticle conjugates with defined laccase combinations in order to obtain nanobiocatalysts, which are active over a broad range of pH values and possess a large substrate spectrum to suitably address pollution by multiple contaminants. A multi-enzymatic approach was investigated by immobilizing five different types of laccases originating from a Thielavia genus, Coriolopsis polyzona, Cerrena unicolor, Pleurotus ostreatus, and Trametes versicolor onto fumed silica nanoparticles, separately and in combinations. The laccases differed concerning their pH optima and substrate affinity. Exploiting their differences allowed the formulation of tailor-made nanobiocatalysts. In particular, the production of a nanobiocatalyst could be achieved that retained a higher percentage of its relative activity over the tested pH range (3-7) compared to the dissolved or separately immobilized enzymes. Furthermore, a nanobiocatalyst could be formulated able to oxidize a broader substrate range than the dissolved or separately immobilized enzymes. Thereby, the potential of the nanobiocatalyst for application in biochemical oxidation applications such as the elimination of multiple target pollutants in biologically treated wastewater has been illustrated.
High-throughput multiparallel activity profiling for oxygen consuming cell layers has been recently developed for extracellular flux analysis. This technology has great potential for determining the enzymatic activity of oxidoreductases (i.e., laccase) both in vivo and in vitro, which is usually measured using photometrical tests monitoring the colored oxidation products. Improvements in terms of sample throughput, comparability, and gain of information (i.e., stoichiometry, electron transfer rate) can be achieved by means of a multiwell plate-based fluorimetric oxygen sensor. In the present study, various laccases have been applied to develop protocols that allow the multiparallel measurement of O(2)-consumption by enzymatic reactions. The developed and validated method enables the comparative quantitation of laccase characteristics (i.e., profiles of activity at various pH values) and minimizes the time it usually takes to collect respiratory data of oxygen-consuming enzymes. Furthermore, the possibility to assess differences between single and multisubstrate kinetics of laccases has been demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.