According to the National Security Agency, the Internet processes 1826 petabytes (PB) of data per day [1]. In 2018, the amount of data produced every day was 2.5 quintillion bytes [2]. Previously, the International Data Corporation (IDC) estimated that the amount of generated data will double every 2 years [3], however 90% of all data in the world was generated over the last 2 years, and moreover Google now processes more than 40,000 searches every second or 3.5 billion searches per day [2]. Facebook users upload 300 million photos, 510,000 comments, and 293,000 status updates per day [2, 4]. Needless to say, the amount of data generated on a daily basis is staggering. As a result, techniques are required to analyze and understand this massive amount of data, as it is a great source from which to derive useful information.
The large number of possible configurations of modern software-based systems, combined with the large number of possible environmental situations of such systems, prohibits enumerating all adaptation options at design time and necessitates planning at run time to dynamically identify an appropriate configuration for a situation. While numerous planning techniques exist, they typically assume a detailed state-based model of the system and that the situations that warrant adaptations are known. Both of these assumptions can be violated in complex, real-world systems. As a result, adaptation planning must rely on simple models that capture what can be changed (input parameters) and observed in the system and environment (output and context parameters). We therefore propose planning as optimization: the use of optimization strategies to discover optimal system configurations at runtime for each distinct situation that is also dynamically identified at runtime. We apply our approach to CrowdNav, an open-source traffic routing system with the characteristics of a real-world system. We identify situations via clustering and conduct an empirical study that compares Bayesian optimization and two types of evolutionary optimization (NSGA-II and novelty search) in CrowdNav.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.