The potential role of the matrix metalloproteinase (MMP) system in the pathophysiology of the adipose tissue was investigated in a mouse model of nutritionally induced obesity. mRNA levels of 16 MMPs and 4 tissue inhibitors of MMPs (TIMPs) were measured by semiquantitative RT-PCR in adipose tissue isolated from mice maintained for 15 weeks on a standard or high-fat diet. In mice on standard diet, with the exception of MMP-8, all MMP and TIMP transcripts were detected in both gonadal and subcutaneous depots. In obese mice, the expression of MMP-3, -11, -12, -13, and -14 and TIMP-1 mRNAs was upregulated, whereas that of MMP-7, -9, -16, and -24 and TIMP-4 was downregulated. Most MMP and TIMP mRNAs were expressed at higher levels in stromal-vascular cells than in mature adipocytes. Analysis of adipose tissue by in situ fluorescent zymography revealed MMP-dependent proteolytic activities, demonstrating the presence of active MMPs in the intact tissue. In vitro conversion of adipogenic 3T3-F442A cells into mature adipocytes was associated with substantial modulations of MMP and TIMP expression. Moreover, this in vitro adipogenesis was reduced in the presence of a synthetic MMP inhibitor. Thus, the adipose tissue expresses a large array of MMPs and TIMPs, which modulate adipocyte differentiation.
The increasing diversity in both substrates and functions of matrix metalloproteinases (MMPs) makes these enzymes central regulators in the complex tumor ecosystem composed of cancer cells and their microenvironment. In the majority of cancers, membrane-associated and extracellular proteases are mainly produced by host cells including inflammatory cells, endothelial cells, pericytes and fibroblasts. Recent data based on in vitro and in vivo studies have demonstrated the relevance of these enzymes in multiple processes controlling cancer growth, angiogenesis and metastatic dissemination. This review will present the emerging MMP-related features of cancer cells and host cells.
Development of vasculature and mRNA expression of 17 pro- or antiangiogenic factors were studied during adipose tissue development in nutritionally induced or genetically determined murine obesity models. Subcutaneous (SC) and gonadal (GON) fat pads were harvested from male C57Bl/6 mice kept on standard chow [standard fat diet (SFD)] or on high-fat diet for 0-15 wk and from male ob/ob mice kept on SFD. Ob/ob mice and C57Bl/6 mice on high-fat diet had significantly larger SC and GON fat pads, accompanied by significantly higher blood content, increased total blood vessel volume, and higher number of proliferating cells. mRNA and protein levels of angiopoietin (Ang)-1 were down-regulated, whereas those of thrombospondin-1 were up-regulated in developing adipose tissue in both obesity models. Ang-1 mRNA levels correlated negatively with adipose tissue weight in the early phase of nutritionally induced obesity as well as in genetically determined obesity. Placental growth factor and Ang-2 expression were increased in SC adipose tissue of ob/ob mice, and thrombospondin-2 was increased in both their SC and GON fat pads. mRNA levels of vascular endothelial growth factor (VEGF)-A isoforms VEGF-B, VEGF-C, VEGF receptor-1, -2, and -3, and neuropilin-1 were not markedly modulated by obesity. This modulation of angiogenic factors during development of adipose tissue supports their important functional role in obesity.
Membrane-type matrix metalloproteinases (MT-MMP) constitute a subfamily of six distinct membrane-associated MMPs. Although the contribution of MT1-MMP during different steps of cancer progression has been well documented, the significance of other MT-MMPs is rather unknown. We have investigated the involvement of MT4-MMP, a glycosylphosphatidylinositol-anchored protease, in breast cancer progression. Interestingly, immunohistochemical analysis shows that MT4-MMP production at protein level is strongly increased in epithelial cancer cells of human breast carcinomas compared with normal epithelial cells. Positive staining for MT4-MMP is also detected in lymph node metastases. In contrast, quantitative reverse transcription-PCR analysis reveals similar MT4-MMP mRNA levels in human breast adenocarcinomas and normal breast tissues. Stable transfection of MT4-MMP cDNA in human breast adenocarcinoma MDA-MB-231 cells does not affect in vitro cell proliferation or invasion but strongly promotes primary tumor growth and associated metastases in RAG-1 immunodeficient mice. We provide for the first time evidence that MT4-MMP overproduction accelerates in vivo tumor growth, induces enlargement of i.t. blood vessels, and is associated with increased lung metastases. These results identify MT4-MMP as a new putative target to design anticancer strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.