Exploring the effects a chemical compound has on a species takes a considerable experimental effort. Appropriate methods for estimating and suggesting new effects can dramatically reduce the work needed to be done by a laboratory. In this paper we explore the suitability of using a knowledge graph embedding approach for ecotoxicological effect prediction. A knowledge graph has been constructed from publicly available data sets, including a species taxonomy and chemical classification and similarity. The publicly available effect data is integrated to the knowledge graph using ontology alignment techniques. Our experimental results show that the knowledge graph based approach improves the selected baselines.
The usefulness and usability of knowledge bases (KBs) is often limited by quality issues. One common issue is the presence of erroneous assertions, often caused by lexical or semantic confusion. We study the problem of correcting such assertions, and present a general correction framework which combines lexical matching, semantic embedding, soft constraint mining and semantic consistency checking. The framework is evaluated using DBpedia and an enterprise medical KB.
Various knowledge bases (KBs) have been constructed via information extraction from encyclopedias, text and tables, as well as alignment of multiple sources. Their usefulness and usability is often limited by quality issues. One common issue is the presence of erroneous assertions and alignments, often caused by lexical or semantic confusion. We study the problem of correcting such assertions and alignments, and present a general correction framework which combines lexical matching, context-aware sub-KB extraction, semantic embedding, soft constraint mining and semantic consistency checking. The framework is evaluated with one set of literal assertions from DBpedia, one set of entity assertions from an enterprise medical KB, and one set of mapping assertions from a music KB constructed by integrating Wikidata, Discogs and MusicBrainz. It has achieved promising results, with a correction rate (i.e., the ratio of the target assertions/alignments that are corrected with right substitutes) of 70.1 %, 60.9 % and 71.8 %, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.