Summary1. Many ecological and evolutionary studies seek to explain patterns of shape variation and its covariation with other variables. Geometric morphometrics is often used for this purpose, where a set of shape variables are obtained from landmark coordinates following a Procrustes superimposition. 2. We introduce geomorph: a software package for performing geometric morphometric shape analysis in the R statistical computing environment. 3. Geomorph provides routines for all stages of landmark-based geometric morphometric analyses in two and three-dimensions. It is an open source package to read, manipulate, and digitize landmark data, generate shape variables via Procrustes analysis for points, curves and surfaces, perform statistical analyses of shape variation and covariation, and to provide graphical depictions of shapes and patterns of shape variation. An important contribution of geomorph is the ability to perform Procrustes superimposition on landmark points, as well as semilandmarks from curves and surfaces. 4. A wide range of statistical methods germane to testing ecological and evolutionary hypotheses of shape variation are provided. These include standard multivariate methods such as principal components analysis, and approaches for multivariate regression and group comparison. Methods for more specialized analyses, such as for assessing shape allometry, comparing shape trajectories, examining morphological integration, and for assessing phylogenetic signal, are also included. 5. Several functions are provided to graphically visualize results, including routines for examining variation in shape space, visualizing allometric trajectories, comparing specific shapes to one another and for plotting phylogenetic changes in morphospace. 6. Finally, geomorph participates to make available advanced geometric morphometric analyses through the R statistical computing platform.
1. Herbivores influence the structure and composition of terrestrial plant communities. However, responses of plant communities to herbivory are variable and depend on environmental conditions, herbivore identity and herbivore abundance. As anthropogenic impacts continue to drive large declines in wild herbivores, understanding the context dependence of herbivore impacts on plant communities becomes increasingly important.2. Exclosure experiments are frequently used to assess how ecosystems reorganize in the face of large wild herbivore defaunation. Yet in many landscapes, declines in large wildlife are often accompanied by other anthropogenic activities, especially land conversion to livestock production. In such cases, exclosure experiments may not reflect typical outcomes of human-driven extirpations of wild herbivores.3. Here, we examine how plant community responses to changes in the identity and abundance of large herbivores interact with abiotic factors (rainfall and soil properties). We also explore how effects of wild herbivores on plant communities differ between large-scale herbivore exclosures and landscape sites where anthropogenic activity has caused wildlife declines, often accompanied by livestock increases.4. Abiotic context modulated the responses of plant communities to herbivore declines with stronger effect sizes in lower-productivity environments. Also, shifts in plant community structure, composition and species richness following wildlife declines differed considerably between exclosure experiments and landscape sites in which wild herbivores had declined and were often replaced by livestock. Plant communities in low wildlife landscape sites were distinct in both composition and physical structure from both exclosure and control sites in experiments. The power of environmental (soil and rainfall) gradients in influencing plant response to herbivores was also greatly dampened or absent in the landscape sites. One likely explanation for these observed differences is the compensatory effect of livestock associated with the depression or extirpation of wildlife.5. Synthesis. Our results emphasize the importance of abiotic environmental heterogeneity in modulating the effects of mammalian herbivory on plant communities and the importance of such covariation in understanding effects of wild herbivore declines. They also suggest caution when extrapolating results from exclosure experiments to predict the consequences of defaunation as it proceeds in the Anthropocene.
Determining origin in a migratory marine vertebrate: a novel method to integrate stable isotopes and satellite tracking Migratory connectivity of a Neotropical migratory songbird revealed by archival light-level geolocators Context-dependent effects of large-wildlife declines on small-mammal communities in central Kenya Ecological Abstract. Many species of large wildlife have declined drastically worldwide. These reductions often lead to profound shifts in the ecology of entire communities and ecosystems. However, the effects of these large-wildlife declines on other taxa likely hinge upon both underlying abiotic properties of these systems and on the types of secondary anthropogenic changes associated with wildlife loss, making impacts difficult to predict. To better understand how these important contextual factors determine the consequences of large-wildlife declines on other animals in a community, we examined the effects of three common forms of largewildlife loss (removal without replacement [using fences], removal followed by replacement with domestic stock, and removal accompanied by crop agricultural use) on small-mammal abundance, diversity, and community composition, in landscapes that varied in several abiotic attributes (rainfall, soil fertility, land-use intensity) in central Kenya. We found that smallmammal communities were indeed heavily impacted by all forms of large-wildlife decline, showing, on average: (1) higher densities, (2) lower species richness per site, and (3) different species assemblages in sites from which large wildlife were removed. However, the nature and magnitude of these effects were strongly context dependent. Rainfall, type of land-use change, and the interaction of these two factors were key predictors of both the magnitude and type of responses of small mammals. The strongest effects, particularly abundance responses, tended to be observed in low-rainfall areas. Whereas isolated wildlife removal primarily led to increased small-mammal abundance, wildlife removal associated with secondary uses (agriculture, domestic stock) had much more variable effects on abundance and stronger impacts on diversity and composition. Collectively, these results (1) highlight the importance of context in determining the impacts of large-wildlife decline on small-mammal communities, (2) emphasize the challenges in extrapolating results from controlled experimental studies to predict the effects of wildlife declines that are accompanied by secondary land-uses, and (3) suggest that, because of the context-dependent nature of the responses to large-wildlife decline, large-wildlife status alone cannot be reliably used to predict small-mammal community changes. A P P L I C A T I O N S
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.