Specialized transducing phages lambda asn harboring chromosomal DNA and genetic markers on either side of the asn gene were isolated. Phages carrying chromosomal DNA counterclockwise of the asn gene can upon infection establish themselves as self-replicating plasmids in asn, recA hosts lysogenic for lambda. It is concluded that this bypassing of normal lambda immunity is due to the presence of the chromosomal replication origin, oriC, in this class of phages. Genetic analysis and the determination of restriction endonuclease cleavage patterns of the different lambda asn lead to the allocation of oriC within 1.5 megadaltons of the asn gene towards the uncA, uncB genes at 82 min on the genetic map of E. coli. The clockwise order of genes on the chromosomes is found to be: bglB, (pst, glmS), (uncA, uncB), oriC, asn, trkD, rbs, rrnC, ilv.
We have developed efficient methodologies for construction and expression of comprehensive phage display libraries of murine Fab antibody fragments in E. coli cells. Our methods optimize several critical steps of the polymerase chain reaction (PCR) amplification of transcripts of the re-arranged immunoglobulin genes and of their subsequent assembly and expression: Firstly, we have designed exhaustive sets of PCR primers of low degeneracy for the amplification of transcripts of the Fab region of the heavy and light-chain genes. These primers proved effective in amplification of Fab gene fragments from a large panel of hybridoma cell lines of different specificity and family sub-type. Secondly, we have developed a 'jumping PCR' technique that effectively assembled and recombined the amplified heavy and light-chain gene fragments into a bi-cistronic operon. Thirdly, we have constructed expression vectors for insertion of the combinatorial Fab gene-cassette in fusion with a truncated version of the phage surface protein, gIIIp. The heavy chain and the light chain-gIII fusion are transcribed as a polycistronic mRNA from the lacZ promoter and efficient transcriptional control is provided by wildtype lacI present on the vector. The utility of the system was demonstrated by isolating several antigen-binding clones from hybridomas and libraries made from immunized mice.
The primary structure and physical chemical properties were determined of a nuclease expressed and secreted by Escherichia colt. The plasmid p403-SD2 carried a DNA sequence isolated from Serratia marcescens encoding the enzyme. During cultivation of the E. colt cells, 85% of the enzyme was released to the growth medium. The enzyme was purified and exhibited a single band with a molecular weight about 30,600 daltons on SDS-PAGE similar to nuclease isolated from S. marcescens. The amino acid composition and the amino acid sequence determined directly confirmed the primary structure of 245 amino acids predicted from the DNA sequence, and, in addition, the two disulfide bridges were assigned. Several physical chemical properties were examined. The ability of the enzyme to cross the outer membrane is proposed to depend upon the formation of the proper structures during the folding process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.