Experiments were carried out on a water-based ferrofluid (gamma-Fe2O3 with carboxydextran shell) using photon correlation spectroscopy (PCS), atomic force microscopy, and magnetic nanoparticle relaxation measurements. The experiments were designed with the aim to relate the Néel signals that are in theory generated by large single core particles with nanoscopic properties, that is, particle size, particle size distribution, shell properties, and aggregation. For this purpose, the ferrofluid was fractionated by magnetic fractionation and size exclusion chromatography. Nanoparticles adsorbed onto positively charged substrates form a two-dimensional monolayer. Their mean core diameters are in the range of 6 to about 20 nm, and particles above 10 nm are mostly aggregates. The hydrodynamic particle diameters are between 13 and 80 nm. The core diameter of the smallest fraction is confirmed by X-ray reflectometry; the surface coverage is controlled by bulk diffusion. Comparison with the hydrodynamic radius yields a shell thickness of 3.8 nm. Considering the shell thickness to be constant for all particles, it was possible to calculate the apparent particle diameter in the original ferrofluid from the PCS signals of all fractions. As expected, the small cores yielded no Néel relaxation signals in freeze-dried samples; however, the fractions containing mostly aggregates yielded Néel relaxation signals.
The minimally invasive elimination of tumours using heating as a therapeutic agent is an emerging technology in medical applications. Particularly, the intratumoural application of magnetic nanoparticles as potential heating sources when exposed to an alternating magnetic field has been demonstrated. The present work deals with the estimation of the basic relationships when the magnetic material has access and binds to structures on cell membranes of target cells at the tumour region, particularly as a consequence of administration through tumour supplying vessels. Therefore, using mouse endothelial cells in culture, the binding of dextran coated magnetic nanoparticles (mean hydrodynamic particle diameter 65 nm) was modelled using the periodate method. The efficacy of cell labelling was demonstrated by magnetorelaxometry (MRX)—a selective method for the detection of only those magnetic nanoparticles that were immobilized—as well as by electron microscopy and iron staining. The amount of iron immobilized on cells was found to be 153 ± 56 µg Fe per 1 × 107 cells as determined by atomic absorption spectrometry. Moreover, after exposure of those 1 × 107 labelled cells to an alternating magnetic field (frequency 410 kHz, amplitude 11 kA m−1) for 5 min, temperature increases of 2 °C were achieved. The consequences of particle immobilization are reflected by the results of the measurements related to the specific heating power (SHP) of the magnetic material. Basically, the heating potential is explained by the superposition of Brown and Neél relaxation while for immobilized nanoparticles the Brown contribution is absent. In the long term the data could open the door to targeted magnetic heating after further optimization of the heating potential of magnetic material as well as after functionalization with biomolecules which recognize specific structures on the surface of cells at the target region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.