This paper presents an approach to managing the thermal power plant’s flexible operation based on the steam generation process optimization. A strategy at the process level, as a first step in the operational optimization of the entire power plant, is proposed. The proposed approach focuses on minimizing the drum boiler startup time, since it is considered the most critical element in the steam generation process and in the thermal power plant’s efficient operation. An approach that addresses the problem to find the optimal sequences of control valves that minimize the drum boiler startup time as a dynamic optimization problem is proposed. To solve the optimization problem, a dynamic optimization framework based on a micro genetic algorithm (mGA) coupled with a dynamic simulation model is implemented. The dynamic simulation model is validated against data available in the literature, and the proposed optimization algorithm is characterized by the use of variable length chromosomes and the use of small population sizes. The results show that optimized operating profiles minimize the drum boiler startup time by at least 35 percent and generate control valve operating sequences that must be carried out to achieve the desired profile, while the structural integrity constraints are fulfilled at all times.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.