We provide a physical prescription based on interferometry for introducing the total phase of a mixed state undergoing unitary evolution, which has been an elusive concept in the past. We define the parallel transport condition that provides a connection form for obtaining the geometric phase for mixed states. The expression for the geometric phase for mixed state reduces to well known formulas in the pure state case when a system undergoes noncyclic and unitary quantum evolution.
We develop a non-adiabatic generalization of holonomic quantum computation in which high-speed universal quantum gates can be realized using non-Abelian geometric phases. We show how a set of non-adiabatic holonomic one-and two-qubit gates can be implemented by utilizing optical transitions in a generic three-level configuration. Our scheme opens up the possibility of realizing universal holonomic quantum computation on qubits characterized by short coherence time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.