Denial of Service (DoS) adalah salah satu serangan cyber populer yang ditargetkan pada situs web organisasi terkenal dan berpotensi memiliki biaya ekonomi dan waktu yang tinggi. Dalam makalah ini, beberapa metode pembelajaran mesin termasuk model ensemble dan pengklasifikasi deep learning berbasis autoencoder dibandingkan dan disetel menggunakan optimasi Bayesian. Kerangka autoencoder memungkinkan untuk mengekstrak fitur baru dengan memetakan input asli ke ruang baru. Metode tersebut dilatih dan diuji baik untuk klasifikasi biner dan multi-kelas pada kumpulan data Digiturk dan Labris, yang baru-baru ini diperkenalkan untuk mendeteksi berbagai jenis serangan DdoS. Semakin penting koneksi data melalui Internet membuat kebutuhan akan keamanan jaringan data semakin meningkat. Salah satu tools yang penting adalah Intrusion detection systems (IDS). Sistem Deteksi Intrusi (IDS) adalah proses pemantauan lalu lintas jaringan dalam sistem untuk mendeteksi pola dan aktivitas yang mencurigakan yang memungkinkan ada serangan dalam sistem itu. beberapa jenis serangan, yaitu Botnet, UDP, SYN, broadcast, sleep deprivation, dan serangan bertubi-tubi. klasifikasi pertama, hasilnya menunjukkan bahwa baik Precision (PR) dan Recall (RE) adalah 89% untuk Algoritma Random Forest. Akurasi rata-rata (AC) dari model yang kami usulkan adalah 89% yang luar biasa dan cukup baik. Pada klasifikasi kedua, hasilnya menunjukkan bahwa baik Precision (PR) dan Recall (RE)sekitar 90% untuk algoritma XGBoost. Akurasi rata-rata (AC) dari model yang kami sarankan adalah 90% pada dataset CICDDoS2019.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.