Gas evolution is a common byproduct of chemical oscillations but is seldom treated as anything but a complication. Its precise quantification is usually underestimated, and if not obvious enough, gaseous products are easily neglected completely. Reported herein is how evolution of gas from uncatalyzed bromate oscillators with pyrocatechol, pyrogallol, and 1,4-cyclohexanedione was measured by a high-precision batch-mode gasometric method, and the data obtained with unprecedented time resolution are presented. Even though within this completely closed arrangement of measurement no oscillations in rate of gas evolution were observed, it is verified that neither of the substrates can be considered totally free of gas production. Nevertheless, the amount of gas evolved from 1,4-cyclohexanedione was confirmed to be very small, and near negligible, if only oscillatory phase is of interest. Conversely, under identical conditions, the peak rates of gas evolution from the other substrates were reached much sooner, and even though the results in all three cases suggest some extent of suppression of gas production by oscillations, as much as 1 equiv of gas in total can be produced from the phenols, especially from pyrogallol, where the degradation was measured to be approximately twice as extensive. Greater caution is, therefore, recommended whenever the gas-free nature of these oscillators is considered.
A high-precision batch-mode technique of gasometric measurement, employing weighing of liquid displaced by the gas, is proposed and supported by a detailed protocol for correct evaluation of the experimental data acquired. Results of measuring the gas production in the Briggs-Rauscher reaction with acetone, recorded following the procedures suggested, and precautions to be taken to enhance their reproducibility are discussed, and a previously undetected structure of the gas evolution rate peaks is reported.
Results of high-precision measurements of gas production in the BL reaction are presented, and an efficient kinetic model for their analysis is proposed. Based on this model, the data have been examined pulse by pulse, and for the first time, the entire records of gas production could be successfully reduced to series of just a few key parameters. It has been confirmed that the kinetics of O2(g) production is of the first order with respect to its precursor. Overall, only two steps have been found necessary to fit the observed pulses in gas production. The first step produces the precursor of the recorded O2(g), and its rate has two components. One component provides the peaks, and its approximation in the form of Gaussian functions has been found as satisfactory. The other component provides the constant baseline of gas production between the pulses. Finally, the precursor gives rise to O2(g) in the second step, and the simple first-order kinetics suggests that the precursor is otherwise relatively unreactive, making O2(aq) a logical candidate. However, the rate constant of this process showed almost perfect linearity with the actual concentrations of H2O2, and it was affected only little by variations in the rate of stirring. It thus seems possible that this final step in gas production, responsible for the majority of O2 produced in pulses, might not be the interphase transport O2(aq) → O2(g), as expected. Instead, it might be a truly chemical process, giving rise to O2(g) in a reaction of H2O2 with another precursor, which is not involved significantly in any other process, but it is not O2(aq). If this is true, the second-order rate constant of this process in the system with initial composition of 0.360 M KIO3, 0.345 M H2O2, and 0.055 M HClO4 at 60 °C would be 0.25-0.30 M(-1)·s(-1), depending on the rate of stirring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.