Today research interests in underwater (UW) communication and navigation technologies are steadily growing. However, the design of robust UW communication and navigation systems demands a deep knowledge of the transmission medium. Acoustic UW (AUW) communication is widely used due to the good propagation characteristics of sound waves in water compared to electromagnetic waves that are highly attenuated. Besides its advantage -the low attenuation compared to electromagnetic waves -AUW communication suffers from multipath propagation, severe Doppler spread due to the low propagation speed of sound, and shadow zones, to name some of the most challenging effects. Evaluation of new communication devices under realistic conditions in sea trials is expensive and time-consuming. Therefore, a simulator modeling the AUW communication channel accurately is a valuable tool for development and evaluation of AUW communication devices. In this paper an Acoustic Underwater Channel and Network Simulator is proposed that uses ray tracing to model the AUW channel. It uses channel impulse responses (CIRs) generated by theBELLHOP ray tracing model to simulate multipath propagation. These CIRs for static constellations of receiver and transmitter are post-processed to be in agreement with the mobility of transmitters and receivers. Thereby, Doppler spread is introduced into the channel model. An empirical noise model is used to superimpose received signals with noise. Different modulation schemes can be evaluated using this AUW channel model in laboratory before expensive sea trials are conducted. In this paper a frequency hopping and an OFDM implementation are realized besides the channel model. Multiple mobile transmitters and receivers can be considered to simulate UW networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.