We have sequenced the genomes of 110 small cell lung cancers (SCLC), one of the deadliest human cancers. In nearly all the tumours analysed we found bi-allelic inactivation of TP53 and RB1, sometimes by complex genomic rearrangements. Two tumours with wild-type RB1 had evidence of chromothripsis leading to overexpression of cyclin D1 (encoded by the CCND1 gene), revealing an alternative mechanism of Rb1 deregulation. Thus, loss of the tumour suppressors TP53 and RB1 is obligatory in SCLC. We discovered somatic genomic rearrangements of TP73 that create an oncogenic version of this gene, TP73Δex2/3. In rare cases, SCLC tumours exhibited kinase gene mutations, providing a possible therapeutic opportunity for individual patients. Finally, we observed inactivating mutations in NOTCH family genes in 25% of human SCLC. Accordingly, activation of Notch signalling in a pre-clinical SCLC mouse model strikingly reduced the number of tumours and extended the survival of the mutant mice. Furthermore, neuroendocrine gene expression was abrogated by Notch activity in SCLC cells. This first comprehensive study of somatic genome alterations in SCLC uncovers several key biological processes and identifies candidate therapeutic targets in this highly lethal form of cancer.
Introduction: A grading system for pulmonary adenocarcinoma has not been established. The International Association for the Study of Lung Cancer pathology panel evaluated a set of histologic criteria associated with prognosis aimed at establishing a grading system for invasive pulmonary adenocarcinoma. Conclusions: A grading system based on the predominant and high-grade patterns is practical and prognostic for invasive pulmonary adenocarcinoma.
- Rapid on-site evaluation can ensure that the targeted lesion is being sampled and can enable appropriate specimen triage. If available, it should be used with EBUS-TBNA in the diagnosis of lung cancer because it can minimize repeat procedures for additional desired testing (ie, molecular studies). Some studies have shown that ROSE does not adversely affect the number of aspirations, total procedure time of EBUS-TBNA, or the rate of postprocedure complications; it is also helpful in providing a preliminary diagnosis that can reduce the number of additional invasive procedures, such as mediastinoscopy. As EBUS technology continues to evolve, our knowledge of the role of ROSE in EBUS-TBNA for the diagnosis of lung cancer will also continue to grow and evolve.
BackgroundThere is currently no Europe-wide consensus on the appropriate preanalytical measures and workflow to optimise procedures for tissue-based molecular testing of non-small-cell lung cancer (NSCLC). To address this, a group of lung cancer experts (see list of authors) convened to discuss and propose standard operating procedures (SOPs) for NSCLC.MethodsBased on earlier meetings and scientific expertise on lung cancer, a multidisciplinary group meeting was aligned. The aim was to include all relevant aspects concerning NSCLC diagnosis. After careful consideration, the following topics were selected and each was reviewed by the experts: surgical resection and sampling; biopsy procedures for analysis; preanalytical and other variables affecting quality of tissue; tissue conservation; testing procedures for epidermal growth factor receptor, anaplastic lymphoma kinase and ROS proto-oncogene 1, receptor tyrosine kinase (ROS1) in lung tissue and cytological specimens; as well as standardised reporting and quality control (QC). Finally, an optimal workflow was described.ResultsSuggested optimal procedures and workflows are discussed in detail. The broad consensus was that the complex workflow presented can only be executed effectively by an interdisciplinary approach using a well-trained team.ConclusionsTo optimise diagnosis and treatment of patients with NSCLC, it is essential to establish SOPs that are adaptable to the local situation. In addition, a continuous QC system and a local multidisciplinary tumour-type-oriented board are essential.
The discovery of oncogenic driver mutations rendering non-small cell lung cancer (NSCLC) targetable by smallmolecule inhibitors, and the development of immunotherapies, have revolutionised NSCLC treatment. Today, instead of non-selective chemotherapies, all patients with advanced NSCLC eligible for treatment (and increasing numbers with earlier, less extensive disease) require fast and comprehensive screening of biomarkers for first-line patient selection for targeted therapy, chemotherapy, or immunotherapy (with or without chemotherapy). To avoid unnecessary re-biopsies, biomarker screening before first-line treatment should also include markers that are actionable from second-line onwards; PD-L1 expression testing is also mandatory before initiating treatment.Population differences exist in the frequency of oncogenic driver mutations: EGFR mutations are more frequent in Asia than Europe, whereas the converse is true for KRAS mutations. In addition to approved first-line therapies, a number of emerging therapies are being investigated in clinical trials. Guidelines for biomarker testing vary by country, with the number of actionable targets and the requirement for extensive molecular screening strategies expected to increase. To meet diagnostic demands, rapid screening technologies for singledriver mutations have been implemented. Improvements in DNA-and RNA-based next-generation sequencing
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.