Online interventions hold great potential for Therapeutic Change Process Research (TCPR), a field that aims to relate in-therapeutic change processes to the outcomes of interventions. Online a client is treated essentially through the language their counsellor uses, therefore the verbal interaction contains many important ingredients that bring about change. TCPR faces two challenges: how to derive meaningful change processes from texts, and secondly, how to assess these complex, varied, and multi-layered processes? We advocate the use text mining and multi-level models (MLMs): the former offers tools and methods to discovers patterns in texts; the latter can analyse these change processes as outcomes that vary at multiple levels. We (re-)used the data from Lamers et al. ( 2015 ) because it includes outcomes and the complete online intervention for clients with mild depressive symptoms. We used text mining to obtain basic text-variables from e-mails, that we analyzed through MLMs. We found that we could relate outcomes of interventions to variables containing text-information. We conclude that we can indeed bridge text mining and MLMs for TCPR as it was possible to relate text-information (obtained through text mining) to multi-leveled TCPR outcomes (using a MLM). Text mining can be helpful to obtain change processes, which is also the main challenge for TCPR. We showed how MLMs and text mining can be combined, but our proposition leaves open how to obtain the most relevant textual operationalization of TCPR concepts. That requires interdisciplinary collaboration and discussion. The future does look bright: based on our proof-of-concept study we conclude that MLMs and text mining can indeed advance TCPR.
In November 2017 Twitter doubled the available character space from 140 to 280 characters. This provided an opportunity for researchers to investigate the linguistic effects of length constraints in online communication. We asked whether the character limit change (CLC) affected language usage in Dutch tweets and hypothesized that there would be a reduction in the need for character-conserving writing styles. Pre-CLC tweets were compared with post-CLC tweets. Three separate analyses were performed: (I) general analysis: the number of characters, words, and sentences per tweet, as well as the average word and sentence length. (II) Token analysis: the relative frequency of tokens and bigrams; (III) partof-speech analysis: the grammatical structure of the sentences in tweets (i.e., adjectives, adverbs, articles, conjunctives, interjections, nouns, prepositions, pronouns, and verbs); pre-CLC tweets showed relatively more textisms, which are used to abbreviate and conserve character space. Consequently, they represent more informal language usage (e.g., internet slang); in turn, post-CLC tweets contained relatively more articles, conjunctions, and prepositions. The results show that online language producers adapt their texts to overcome limit constraints.
The fifth QA campaign at CLEF [1], having its first edition in 2003, offered not only a main task but an Answer Validation Exercise (AVE) [2], which continued last year's pilot, and a new pilot: the Question Answering on Speech Transcripts (QAST) [3, 15]. The main task was characterized by the focus on cross-linguality, while covering as many European languages as possible. As novelty, some QA pairs were grouped in clusters. Every cluster was characterized by a topic (not given to participants). The questions from a cluster possibly contain co-references between one of them and the others. Finally, the need for searching answers in web formats was satisfied by introducing Wikipedia 1 as document corpus. The results and the analyses reported by the participants suggest that the introduction of Wikipedia and the topic related questions led to a drop in systems' performance.
We apply pattern-based methods for collecting hypernym relations from the web. We compare our approach with hypernym extraction from morphological clues and from large text corpora. We show that the abundance of available data on the web enables obtaining good results with relatively unsophisticated techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.