The Astropy Project supports and fosters the development of open-source and openly developed Python packages that provide commonly needed functionality to the astronomical community. A key element of the Astropy Project is the core package astropy, which serves as the foundation for more specialized projects and packages. In this article, we provide an overview of the organization of the Astropy project and summarize key features in the core package, as of the recent major release, version 2.0. We then describe the project infrastructure designed to facilitate and support development for a broader ecosystem of interoperable packages. We conclude with a future outlook of planned new features and directions for the broader Astropy Project.
We present the first public version (v0.2) of the open-source and community-developed Python package, Astropy. This package provides core astronomy-related functionality to the community, including support for domain-specific file formats such as flexible image transport system (FITS) files, Virtual Observatory (VO) tables, and common ASCII table formats, unit and physical quantity conversions, physical constants specific to astronomy, celestial coordinate and time transformations, world coordinate system (WCS) support, generalized containers for representing gridded as well as tabular data, and a framework for cosmological transformations and conversions. Significant functionality is under active development, such as a model fitting framework, VO client and server tools, and aperture and point spread function (PSF) photometry tools. The core development team is actively making additions and enhancements to the current code base, and we encourage anyone interested to participate in the development of future Astropy versions.
We correct the observed Milky Way satellite luminosity function for luminosity bias using published completeness limits for the Sloan Digital Sky Survey DR5. Assuming that the spatial distribution of Milky Way satellites tracks the subhalos found in the Via Lactea ÃCDM N-body simulation, we show that there should be between $300 and $600 satellites within 400 kpc of the Sun that are brighter than the faintest known dwarf galaxies and that there may be as many as $1000, depending on assumptions. By taking into account completeness limits, we show that the radial distribution of known Milky Way dwarfs is consistent with our assumption that the full satellite population tracks that of subhalos. These results alleviate the primary worries associated with the so-called missing satellites problem in CDM. We show that future, deep wide-field surveys such as SkyMapper, the Dark Energy Survey (DES), PanSTARRS, and the Large Synoptic Survey Telescope (LSST) will deliver a complete census of ultrafaint dwarf satellites out to the Milky Way virial radius, offer new limits on the free-streaming scale of dark matter, and provide unprecedented constraints on the low-luminosity threshold of galaxy formation.
We present the results of a comprehensive Keck/DEIMOS spectroscopic survey of the ultra-faint Milky Way satellite galaxy Segue 1. We have obtained velocity measurements for 98.2% of the stars within 67 pc (10 ′ , or 2.3 half-light radii) of the center of Segue 1 that have colors and magnitudes consistent with membership, down to a magnitude limit of r = 21.7. Based on photometric, kinematic, and metallicity information, we identify 71 stars as probable Segue 1 members, including some as far out as 87 pc. After correcting for the influence of binary stars using repeated velocity measurements, we determine a velocity dispersion of 3.7 +1.4 −1.1 km s −1 . The mass within the half-light radius is 5.8 +8.2 −3.1 × 10 5 M ⊙ . The stellar kinematics of Segue 1 require very high mass-to-light ratios unless the system is far from dynamical equilibrium, even if the period distribution of unresolved binary stars is skewed toward implausibly short periods. With a total luminosity less than that of a single bright red giant and a V-band mass-to-light ratio of 3400 M ⊙ /L ⊙ , Segue 1 is the darkest galaxy currently known. We critically re-examine recent claims that Segue 1 is a tidally disrupting star cluster and that kinematic samples are contaminated by the Sagittarius stream. The extremely low metallicities ([Fe/H] < −3) of two Segue 1 stars and the large metallicity spread among the members demonstrate conclusively that Segue 1 is a dwarf galaxy, and we find no evidence in favor of tidal effects. We also show that contamination by the Sagittarius stream has been overestimated. Segue 1 has the highest estimated dark matter density of any known galaxy and will therefore be a prime testing ground for dark matter physics and galaxy formation on small scales.
We present the survey strategy and early results of the "Satellites Around Galactic Analogs" (SAGA) Survey. The SAGA Survey's goal is to measure the distribution of satellite galaxies around 100 systems analogous to the Milky Way down to the luminosity of the Leo I dwarf galaxy (M r < −12.3). We define a Milky Way analog based on K-band luminosity and local environment. Here, we present satellite luminosity functions for 8 Milky Way analog galaxies between 20 to 40 Mpc. These systems have nearly complete spectroscopic coverage of candidate satellites within the projected host virial radius down to r o < 20.75 using low redshift gri color criteria. We have discovered a total of 25 new satellite galaxies: 14 new satellite galaxies meet our formal criteria around our complete host systems, plus 11 additional satellites in either incompletely surveyed hosts or below our formal magnitude limit. Combined with 13 previously known satellites, there are a total of 27 satellites around 8 complete Milky Way analog hosts. We find a wide distribution in the number of satellites per host, from 1 to 9, in the luminosity range for which there are five Milky Way satellites. Standard abundance matching extrapolated from higher luminosities predicts less scatter between hosts and a steeper luminosity function slope than observed. We find that the majority of satellites (26 of 27) are star-forming. These early results indicate that the Milky Way has a different satellite population than typical in our sample, potentially changing the physical interpretation of measurements based only on the Milky Way's satellite galaxies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.