Abstract-We present novel techniques for visualizing, illustrating, analyzing, and generating carvings in surfaces. In particular, we consider the carvings in the plaster of the cloister of the Magdeburg cathedral, which dates to the 13th century. Due to aging and weathering, the carvings have flattened. Historians and restorers are highly interested in using digitalization techniques to analyze carvings in historic artifacts and monuments and to get impressions and illustrations of their original shape and appearance. Moreover, museums and churches are interested in such illustrations for presenting them to visitors. The techniques that we propose allow for detecting, selecting, and visualizing carving structures. In addition, we introduce an example-based method for generating carvings. The resulting tool, which integrates all techniques, was evaluated by three experienced restorers to assess the usefulness and applicability. Furthermore, we compared our approach with exaggerated shading and other state-of-the-art methods.
The detection of varying 2D shapes is a recurrent task for Computer Vision applications, and camera based object recognition has become a standard procedure. Due to the discrete nature of digital images and aliasing effects, shape recognition can be complicated. There are many existing algorithms that discuss the identification of circles and ellipses, but they are very often limited in flexibility or speed or require high quality input data. Our work considers the application of shape recognition for processes in industrial environments and, especially the automatization requires reliable and fast algorithms at the same time. We take a very practical look at the automated shape recognition for common industrial tasks and present a very fast novel approach for the detection of deformed shapes which are in the broadest sense elliptic. Furthermore, we consider the automated recognition of bacteria colonies and coded markers for both 3D object tracking and an automated camera calibration procedure
The experimental identification and graphical verification of flow-and torque-loss and coefficient of efficiency in the work space is needed for designers, to set up the static performance specifications and diagnosis of hydraulic pumps and motors. This paper presents and proposes an experimental based method for identification and modelling of flowand torque-loss for hydraulic motors. The method is based on least-square approximation technique. As an example, the experimental results and modelling results obtained with gerotor type motors on the dynamometer are presented and discussed. A bi-directional computer controlled dynamometer system is applied to carry out the necessary measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.