Very few efficient bonding agents for use in solid rocket propellants with nitramine filler materials and energetic binder systems are currently available. In this work, we report the synthesis, detailed characterization, and use of neutral polymeric bonding agents (NPBA) in isocyanate‐cured and smokeless composite rocket propellants based on the nitramine octogen (HMX), the energetic binder glycidyl azide polymer (GAP), and the energetic plasticizer N‐butyl‐2‐nitratoethylnitramine (BuNENA). These polymeric bonding agents clearly influenced the viscosity of the uncured propellant mixtures and provided significantly enhanced mechanical properties to the cured propellants, even at low NPBA concentrations (down to 0.001 wt‐% of propellant). A modified NPBA more or less free of hydroxyl functionalities for interactions with isocyanate curing agent provided the same level of mechanical improvement as regular NPBA containing a substantial number of reactive hydroxyl groups. However, some degree of reactivity towards isocyanate is essential for function.
Traditional composite rocket propellants are cured by treatment of hydroxyl‐terminated prepolymers with polyfunctional aliphatic isocyanates. For development of smokeless composite propellants containing nitramines and/or ammonium dinitramide (ADN), energetic binder systems using glycidyl azide polymer (GAP) are of particular interest. Polyfunctional alkynes are potential isocyanate‐free curing agents for GAP through thermal azide‐alkyne cycloaddition and subsequent formation of triazole crosslinkages. Propargyl succinate or closely related aliphatic derivatives have previously been reported for such isocyanate‐free curing of GAP. Herein, we present the synthesis and use of a new aromatic alkyne curing agent, the crystalline solid bisphenol A bis(propargyl ether) (BABE), as isocyanate‐free curing agent in smokeless propellants based on GAP, using either octogen (HMX) and/or prilled ADN as energetic filler materials. Thermal and mechanical properties, impact and friction sensitivity and ballistic characteristics were evaluated for these alkyne cured propellants. Improved mechanical properties could be obtained by combining isocyanate and alkyne curing agents (dual curing), a combination that imparted better mechanical properties in the cured propellants than either curing system did individually. The addition of a neutral polymeric bonding agent (NPBA) for improvement of binder‐filler interactions was also investigated using tensile testing and dynamic mechanical analysis (DMA). It was verified that the presence of isocyanates is essential for the NPBA to improve the mechanical properties of the propellants, further strengthening the attractiveness of dual cure systems.
In order to predict the impact sensitivity of high explosives, we designed and evaluated several models based on the trigger linkage hypothesis and the Arrhenius equation. To this effect, we calculated the heat of detonation, temperature of detonation, and bond dissociation energy for 70 energetic molecules. The bond dissociation energy divided by the temperature of detonation proved to be a good predictor of the impact sensitivity of nitroaromatics, with a coefficient of determination (R2) of 0.81. A separate Bayesian analysis gave similar results, taking model complexity into account. For nitramines, there was no relationship between the impact sensitivity and the bond dissociation energy. None of the models studied gave good predictions for the impact sensitivity of liquid nitrate esters. For solid nitrate esters, the bond dissociation energy divided by the temperature of detonation showed promising results (R2 = 0.85), but since this regression was based on only a few data points, it was discredited when model complexity was accounted for by our Bayesian analysis. Since the temperature of detonation correlated with the impact sensitivity for nitroaromatics, nitramines, and nitrate esters, we consider it to be one of the leading predictive factors of impact sensitivity for energetic materials.
a] 1I ntroductionIn solid propellant rocketry,p ropulsion units in fielded and currently operational missile systems are founded upon ar elatively small number of firmly established propellant technologies, most of which have an extensive historical track record. While propulsion systems with either limited or no restrictions with respect to exhaust plume signature have their basis in ammonium perchlorate (AP) composites with inert binder systems (preferably aluminized), smokeless systems are based on nitrate ester plasticized binders (nitrocellulose, polyethers, polyesters) with or without nitramine filler materials [1].C ombination of the two sorts gives rise to the high-performance propellant types important in domains such as submarine-launched ballistic missiles, applications where performance with regards to specific impulse is particularly critical [2].Although implemented propellant technology has now remained somewhat static for ac onsiderable period of time, new incentives have accelerated the development of new generations of solid rocket propellants. Increasingly stringent legislature associated with the handling and use of many chemical species traditionally used in rocket propellant formulations (heavy metal compounds, perchlorates, isocyanates), when assessed in conjuncture with at ightening export bureaucracy and the diminishing production base for many important raw materials (a result of plant closures and industry consolidation during recent decades), have all contributed to an increased willingness by relevant manufacturers to evaluate new propellant candidates.The bulk of contemporary research efforts directed towards new solid rocket propellant candidates is concentrated around new energetic binder systems and chlorine-free filler materials, as well as associated formulation additives (curing agents, bonding agents, burning rate modifiers) [3-Abstract:G lycidyl azide polymer (GAP) is an important energetic binder candidate for new minimum signature solid composite rocket propellants, but the mechanical properties of such GAP propellants are often limited. The mechanical characteristics of composite rocket propellants are mainly determined by the nature of the binder system and the binder-filler interactions. In this work, we report ad etailed investigation into curing systems for GAP diol with the objective of attaining the best possible mechanical characteristics as evaluated by uniaxial tensile testing of non-plasticized polymer specimens. We started out by investigating isocyanate and isocyanate-free curing systems, the latter by using the crystalline and easily soluble alkyne curing agent bispropargylhydroquinone (BPHQ). In the course of the presented study,w et hen assessed the feasi-bility of dual curing systems, either by using BPHQ and isophorone diisocyanate (IPDI) simultaneously (synchronous dual curing), or by applying propargyl alcohol and IPDI consecutively (sequential dual curing). The latter method, which employs propargyl alcohol as ar eadily available and adjustable hydroxyl...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.