Increasing evidence points to an active stromal involvement in cancer initiation and progression. Cytokines derived from tumor cells are believed to modulate stromal cells to produce growth and angiogenic factors, which in turn provide the tumor with the necessary microenvironment for expansion and invasion. Transforming growth factor B (TGFB) has been implicated as a candidate cytokine to mediate this communication. However, how its signaling in stromal cells regulates tumorigenesis and tumor progression remains unresolved. We show that normal, presenescent fibroblasts or prostate stromal cells cotransplanted with prostate carcinoma cells s.c. into nude mice reduced tumor latency and accelerated tumor growth. When their TGFB signaling was blocked, the fibroblasts and stromal cells still stimulated tumor initiation but no longer supported tumor growth as control cells did. The loss of the tumor growth-promoting activity of the stromal cells with attenuated TGFB signaling was not associated with altered cellular senescence or tumor angiogenicity. TGFB and the medium conditioned by the prostate carcinoma cells stimulated myofibroblast differentiation of the intact stromal cells, but not the stromal cells with attenuated TGFB signaling. Gene microarray and quantitative reverse transcription-PCR analyses showed that TGFB upregulated a host of genes in stromal cells that are involved in tissue remodeling and wound healing. Thus, our study provides evidence for TGFB as a supporting agent in tumor progression through the induction of a perpetual wound healing process in the tumor microenvironment. [Cancer Res 2007;67(12):5737-46]
Enhanced activation of phosphoinositide 3-kinase (PI3K) is a hallmark of many human tumors because it promotes cell proliferation and survival through several mechanisms. One of these mechanisms is the phosphorylation of the serine and threonine kinase Akt at the cytosolic side of the plasma membrane by phosphoinositide-dependent protein kinase 1 (PDK1), which is recruited and activated by binding to the phosphoinositides produced by PI3K. We previously demonstrated increased nuclear accumulation of PDK1 in cells with enhanced PI3K activity. We report that nuclear PDK1 promoted cell proliferation by suppressing FOXO3A-dependent transcription of the gene encoding p27Kip1 (an inhibitor of cell cycle progression), whereas it enhanced cell survival by inhibiting the activation of c-Jun amino-terminal kinase. Cells with nuclear-localized PDK1 showed anchorage-independent growth, and when injected into mice, these cells induced the formation of solid tumors. In human prostate tumors, cytoplasmic localization of PDK1 correlated only with early-stage, low-risk tumors, whereas nuclear PDK1 localization correlated with high-risk tumors. Together, our findings suggest a role for nuclear-translocated PDK1 in oncogenic cellular transformation and tumor progression in mice and humans.
Transforming growth factor beta (TGFbeta) isoforms are known to be upregulated during the progression of some diseases. They have been shown to stimulate invasion and metastasis during carcinogenesis and promote many pathological fibrotic diseases when overstimulated. This involvement in late-stage carcinoma and pathological fibrosis makes TGFbeta isoforms prime targets for therapeutic intervention. Although soluble ectodomains of TGFbeta type II (RII) and betaglycan (BG) have been utilized as TGFbeta inhibitors, their antagonistic potency against different TGFbeta isoforms varies considerably because RII does not appreciably bind to TGFbeta2 whereas BG binds weakly to TGFbeta1 and TGFbeta3. In this study, we have successfully constructed and expressed a recombinant fusion protein containing the endoglin domain of BG (BG(E)) and the extracellular domain of RII. The fusion protein (named BG(E)RII) was purified from bacterial inclusion bodies by immobilized metal ion chromatography, refolded and characterized. It bound with higher affinity to TGFbeta1 and TGFbeta3 than a commercially available soluble RII and to TGFbeta2 than a commercially available soluble BG. More significantly, whereas BG(E) or RII alone showed no antagonistic activity towards TGFbeta2, BG(E)RII inhibited the signaling of both TGFbeta1 and TGFbeta2 in cell-based assays including TGFbeta-induced phosphorylation of Smad2 and Smad3, and transcription from a TGFbeta-responsive promoter more effectively than equimolar concentrations of either RII or BG. After further purification by gel filtration chromatography, BG(E)RII was found to have greater activity than other potent TGFbeta inhibitors in blocking the signaling of TGFbeta1 and TGFbeta3. Thus, BG(E)RII is a potent pan-TGFbeta inhibitor in vitro and has potential for blocking TGFbeta-induced pathogenesis in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.