The position of the hyoid arch suggests that it supports soft tissue surrounding the upper airway (UA) and can act to maintain UA patency. We also suspected that muscles inserting on the hyoid arch might show respiratory patterns of activity that could be affected by respiratory stimuli. To test these possibilities, we moved the hyoid arch ventrally in six anesthetized dogs either by traction on it or by stimulation of hyoid muscles. UA resistance was decreased 73 +/- (SE) 6% and 72 +/- 6% by traction and stimulation during expiration and 57 +/- 15% and 52 +/- 8% during inspiration. Moving averages of the geniohyoid (GH) and thyrohyoid (TH) obtained in six other dogs breathing 100% O2 showed phasic respiratory activity while the sternohyoid (SH) showed phasic respiratory activity in only two of these animals and no activity in four. With progressive hypercapnia, GH and TH increased as did SH when activity was already present. Airway occlusion at end expiration augmented and prolonged inspiratory activity in the hyoid muscles but did not elicit SH activity if not already present. Occlusion at end inspiration suppressed phasic activity in hyoid muscles for as long as in the diaphragm. After vagotomy activity increased and became almost exclusively inspiratory. Activity appeared in SH when not previously present. Duration and amplitude of hyoid muscle activity were increased with negative UA pressure and augmented breaths. We conclude that the hyoid arch and muscles can strongly affect UA flow resistance. Hyoid muscles show responses to chemical, vagal, and negative pressure stimuli similar to other UA muscles.
The effects of negative pressure applied to just the upper airway on nasal and laryngeal muscle activity were studied in 14 spontaneously breathing anesthetized dogs. Moving average electromyograms were recorded from the alae nasi (AN) and posterior cricoarytenoid (PCA) muscles and compared with those of the genioglossus (GG) and diaphragm. The duration of inspiration and the length of inspiratory activity of all upper airway muscles was increased in a graded manner proportional to the amount of negative pressure applied. Phasic activation of upper airway muscles preceded inspiratory activity of the diaphragm under control conditions; upper airway negative pressure increased this amount of preactivation. Peak diaphragm activity was unchanged with negative pressure, although the rate of rise of muscle activity decreased. The average increases in peak upper airway muscle activity in response to all levels of negative pressure were 18 +/- 4% for the AN, 27 +/- 7% for the PCA, and 122 +/- 31% for the GG (P less than 0.001). Rates of rise of AN and PCA electrical activity increased at higher levels of negative pressure. Nasal negative pressure affected the AN more than the PCA, while laryngeal negative pressure had the opposite effect. The effects of nasal negative pressure could be abolished by topical anesthesia of the nasal passages, while the effects of laryngeal negative pressure could be abolished by either topical anesthesia of the larynx or section of the superior laryngeal nerve. Electrical stimulation of the superior laryngeal nerve caused depression of AN and PCA activity, and hence does not reproduce the effects of negative pressure.(ABSTRACT TRUNCATED AT 250 WORDS)
Among the aminopyridines, 3,4-diaminopyridine (DAP) is a more effective K+ channel blocker than is 4-aminopyridine (4-AP), and, furthermore, DAP enhances neuromuscular transmission. Because 4-AP improves muscle contractility, we hypothesized that DAP would also increase force and, in addition, ameliorate fatigue and improve the neurotransmission failure component of fatigue. Rat diaphragm strips were studied in vitro (37 degrees C). In field-stimulated muscle, 0.3 mM DAP significantly increased diaphragm twitch force, prolonged contraction time, and shifted the force-frequency relationship to the left without-altering peak tetanic force, resulting in increased force at stimulation frequencies < or = 50 Hz. During 20-Hz intermittent stimulation, DAP increased diaphragm peak force compared with control during a 150-s fatigue run and, furthermore, significantly improved maintenance of intratrain force. The relative contribution of neurotransmission failure to fatigue was estimated by comparing the force generated by phrenic nerve-stimulated muscles with that generated by curare-treated field-stimulated muscles. DAP significantly increased force in nerve-stimulated muscles and, in addition, reduced the neurotransmission failure contribution to diaphragm fatigue. Thus DAP increases muscle force at low-to-intermediate stimulation frequencies, improves overall force and intratrain fatigue during 20-Hz intermittent stimulation, and reduces neurotransmission failure.
The effects of vagally mediated volume-related feedback on the activity of upper airway muscles was assessed in nine pentobarbital-anesthetized, tracheostomized, spontaneously breathing dogs. Moving average electrical activity was recorded before and during single-breath airway occlusions from the genioglossus, posterior cricoarytenoid, and alae nasi muscles and compared with simultaneously recorded tidal volume and electrical activity of the phrenic nerve (6 dogs) or diaphragm (3 dogs). The normally early peak of upper airway muscle activity during unoccluded breaths was delayed to late or end inspiration during occluded breaths. Inspiratory depression started at a lower volume above end-expiratory volume and at an earlier time after inspiratory onset for the upper airway muscles than for the phrenic nerve and the diaphragm. The amount of depression at the end of inspiratory airflow was larger for all of the upper airway muscles than for the phrenic nerve and diaphragm. Depressive effects were most prominent in the genioglossus, followed by the posterior cricoarytenoid and the alae nasi. After vagotomy, depressive effects of volume-related feedback were no longer seen. These results suggest that activity of the upper airway muscles is modulated by vagally mediated feedback, apparently to a larger extent than that of the diaphragm and phrenic nerve.
The mechanism of the nearly universal decreased muscle strength in cirrhosis is not known. We evaluated whether hyperammonemia in cirrhosis causes contractile dysfunction independent of reduced skeletal muscle mass. Maximum grip strength and muscle fatigue response were determined in cirrhotic patients and controls. Blood and muscle ammonia concentrations and grip strength normalized to lean body mass were measured in the portacaval anastomosis (PCA) and sham-operated pair-fed control rats (n = 5 each). Ex vivo contractile studies in the soleus muscle from a separate group of Sprague-Dawley rats (n = 7) were performed. Skeletal muscle force of contraction, rate of force development, and rate of relaxation were measured. Muscles were also subjected to a series of pulse trains at a range of stimulation frequencies from 20 to 110 Hz. Cirrhotic patients had lower maximum grip strength and greater muscle fatigue than control subjects. PCA rats had a 52.7 ± 13% lower normalized grip strength compared with control rats, and grip strength correlated with the blood and muscle ammonia concentrations (r(2) = 0.82). In ex vivo muscle preparations following a single pulse, the maximal force, rate of force development, and rate of relaxation were 12.1 ± 3.5 g vs. 6.2 ± 2.1 g; 398.2 ± 100.4 g/s vs. 163.8 ± 97.4 g/s; -101.2 ± 22.2 g/s vs. -33.6 ± 22.3 g/s in ammonia-treated compared with control muscle preparation, respectively (P < 0.001 for all comparisons). Tetanic force, rate of force development, and rate of relaxation were depressed across a range of stimulation from 20 to 110 Hz. These data provide the first direct evidence that hyperammonemia impairs skeletal muscle strength and increased muscle fatigue and identifies a potential therapeutic target in cirrhotic patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.