This is the published version of a paper presented at Intelligent Vehicles Symposium (IV), 2016 IEEE. Citation for the original published paper:Ward, E., Folkesson, J. (2016) Vehicle localization with low cost radar sensors. Abstract-Autonomous vehicles rely on GPS aided by motion sensors to localize globally within the road network. However, not all driving surfaces have satellite visibility. Therefore, it is important to augment these systems with localization based on environmental sensing such as cameras, lidar and radar in order to increase reliability and robustness. In this work we look at using radar for localization. Radar sensors are available in compact format devices well suited to automotive applications. Past work on localization using radar in automotive applications has been based on careful sensor modeling and Sequential Monte Carlo, (Particle) filtering. In this work we investigate the use of the Iterative Closest Point, ICP, algorithm together with an Extended Kalman filter, EKF, for localizing a vehicle equipped with automotive grade radars. Experiments using data acquired on public roads shows that this computationally simpler approach yields sufficiently accurate results on par with more complex methods.
Highly automated road vehicles need the capability of stopping safely in a situation that disrupts continued normal operation, e.g. due to internal system faults. Motion planning for safe stop differs from nominal motion planning, since there is not a specific goal location. Rather, the desired behavior is that the vehicle should reach a stopped state, preferably outside of active lanes. Also, the functionality to stop safely needs to be of high integrity. The first contribution of this paper is to formulate the safe stop problem as a benchmark optimal control problem, which can be solved by dynamic programming. However, this solution method cannot be used in real-time. The second contribution is to develop a real-time safe stop trajectory planning algorithm, based on selection from a precomputed set of trajectories. By exploiting the particular properties of the safe stop problem, the cardinality of the set is decreased, making the algorithm computationally efficient. Furthermore, a monitoring based architecture concept is proposed, that ensures dependability of the safe stop function. Finally, a proof of concept simulation using the proposed architecture and the safe stop trajectory planner is presented.
Abstract-In many traffic situations there are times where interaction with other drivers is necessary and unavoidable in order to safely progress towards an intended destination. This is especially true for merge manoeuvres into dense traffic, where drivers sometimes must be somewhat aggressive and show the intention of merging in order to interact with the other driver and make the driver open the gap needed to execute the manoeuvre safely. Many motion planning frameworks for autonomous vehicles adopt a reactive approach where simple models of other traffic participants are used and therefore need to adhere to large margins in order to behave safely. However, the large margins needed can sometimes get the system stuck in congested traffic where time gaps between vehicles are too small. In other situations, such as a highway merge, it can be significantly more dangerous to stop on the entrance ramp if the gaps are found to be too small than to make a slightly more aggressive manoeuvre and let the driver behind open the gap needed. To remedy this problem, this work uses the Intelligent Driver Model (IDM) to explicitly model the interaction of other drivers and evaluates the risk by their required deceleration in a similar manner as the Minimum Overall Breaking Induced by Lane change (MOBIL) model that has been used in large scale traffic simulations before. This allows the algorithm to evaluate the effect on other drivers depending on our own trajectory plans by simulating the nearby traffic situation. Finding a globally optimal solution is often intractable in these situations so instead a large set of candidate trajectories are generated that are evaluated against the traffic scene by forward simulations of other traffic participants. By discretization and using an efficient trajectory generator together with efficient modelling of the traffic scene real-time demands can be met.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.