Arterial stiffness is an independent risk factor found to correlate with a wide range of cardiovascular diseases. It has been suggested that shear wave elastography (SWE) can be used to quantitatively measure local arterial shear modulus, but an accuracy assessment of the technique for arterial applications has not yet been performed. In this study, the influence of confined geometry on shear modulus estimation, by both group and phase velocity analysis, was assessed, and the accuracy of SWE in comparison with mechanical testing was measured in nine pressurized arterial phantoms. The results indicated that group velocity with an infinite medium assumption estimated shear modulus values incorrectly in comparison with mechanical testing in arterial phantoms (6.7 ± 0.0 kPa from group velocity and 30.5 ± 0.4 kPa from mechanical testing). To the contrary, SWE measurements based on phase velocity analysis (30.6 ± 3.2 kPa) were in good agreement with mechanical testing, with a relative error between the two techniques of 8.8 ± 6.0% in the shear modulus range evaluated (40-100 kPa). SWE by phase velocity analysis was validated to accurately measure stiffness in arterial phantoms.
Determining plaque vulnerability is critical when selecting the most suitable treatment for patients with atherosclerotic plaque. Currently, clinical non-invasive ultrasound-based methods for plaque characterization are limited to visual assessment of plaque morphology and new quantitative methods are needed. In this study, shear wave elastography (SWE) was used to characterize hard and soft plaque mimicking inclusions in six common carotid artery phantoms by using phase velocity analysis in static and dynamic environments. The results were validated with mechanical tensile testing. In the static environment, SWE measured a mean shear modulus of 5.8 ± 0.3 kPa and 106.2 ± 17.2 kPa versus 3.3 ± 0.5 Pa and 98.3 ± 3.4 kPa measured by mechanical testing in the soft and hard plaques respectively. Furthermore, it was possible to measure the plaques' shear moduli throughout a simulated cardiac cycle. The results show good agreement between SWE and mechanical testing and indicate the possibility for in vivo arterial plaque characterization using SWE.
Five small porcine aortas were used as a human carotid artery model, and their stiffness was estimated using shear wave elastography (SWE) in the arterial wall and a stiffened artery region mimicking a stiff plaque. To optimize the SWE settings, shear wave bandwidth was measured with respect to acoustic radiation force push length and number of compounded angles used for motion detection with plane wave imaging. The mean arterial wall and simulated plaque shear moduli varied from 41 ± 5 to 97 ± 10 kPa and from 86 ± 13 to 174 ± 35 kPa, respectively, over the pressure range 20-120 mmHg. The results revealed that a minimum bandwidth of approximately 1500 Hz is necessary for consistent shear modulus estimates, and a high pulse repetition frequency using no image compounding is more important than a lower pulse repetition frequency with better image quality when estimating arterial wall and plaque stiffness using SWE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.