Purpose
The objective of the present work was to screen whether a novel pediatric hydrocortisone granule formulation can be co-administered with common food matrices and liquids.
Methods
Pediatric hydrocortisone granules were studied using a biopredictive in vitro approach. Experiments included an in situ chemical compatibility study of active ingredient and drug product with liquid dosing vehicles and soft foods commonly ingested by infants, pre-school- and school children. Drug solubility and stability experiments in the different vehicle types and, drug release/dissolution experiments mimicking age-related pediatric gastric conditions after administering the hydrocortisone granules together with the dosing vehicles and after different exposure/mixing times were performed.
Results
In the simulated dosing scenarios applied in dissolution experiments, in vitro dissolution in gastric conditions was rapid and complete. Results of the chemical compatibility/stability studies indicated that mixing with the different dosing vehicles studied should not be an issue regarding drug degradation products.
Conclusions
A novel in vitro approach ensuring a proper risk assessment of the use of dosing vehicles in the administration of pediatric dosage forms was established and applied to a novel pediatric hydrocortisone drug product. The studied dosing vehicles were shown to not alter performance of the drug product and are thus considered suitable for administration with hydrocortisone granules.
-Purpose:A variety of fixed-dose combination products is used in the therapy of Parkinson Disease. However, to date a proper analytical method applicable for comparative screening of different antiparkinson products was not available. The objective of the present work was thus to develop and validate an analytical method for the simultaneous quantification of levodopa, carbidopa, benserazide and entacapone. The method should be applicable for quantifying samples from drug release experiments with marketed products and prototype formulations performed under compendial and biorelevant test conditions. Methods: A fast and robust method applicable for separation and quantification of the four compounds was developed and validated according to International Conference on Harmonization guidelines. Method validation covered applicability to a wide concentration range of all compounds and peak separation in complex sample matrices such as biorelevant dissolution media. Results: The compounds were successfully separated by using a gradient elution method on an endcapped LiChrospher 100 RP-18 (250 x 4.6 mm, 5 µm) column coupled with a LiChrospher 100 RP-18 precolumn (4 x 4 mm, 5 µm) at a column temperature of 35.0 °C and a flow rate of 1.50 mL/min. The injection volume was 30 µL and the detection wavelengths were 280 and 210 nm, respectively. For all drug/media combinations the method was linear (r 2 > 0.999) for a concentration range corresponding to 1.25 -125 % label claim (i.e. 200 mg levodopa/entacapone and 50 mg carbidopa/benserazide) released. All other validation parameters were in the specified limits over the same concentration range. Conclusion: The new method allows for robust and fast separation of levodopa, carbidopa, benserazide and entacapone without any interference caused by excipients or ingredients of compendial and biorelevant dissolution media and thus presents a valuable tool in both formulation development and in vitro drug release screening of numerous fixed-dose combinations of antiparkinson drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.