Scalable execution of expensive continuous queries over massive data streams requires input streams to be split into parallel sub-streams. The query operators are continuously executed in parallel over these sub-streams. Stream splitting involves both partitioning and replication of incoming tuples, depending on how the continuous query is parallelized. We provide a stream splitting operator that enables such customized stream splitting. However, it is critical that the stream splitting itself keeps up with input streams of high volume. This is a problem when the stream splitting predicates have some costs. Therefore, to enable customized splitting of high-volume streams, we introduce a parallelized stream splitting operator, called parasplit. We investigate the performance of parasplit using a cost model and experimentally. Based on these results, a heuristic is devised to automatically parallelize the execution of parasplit. We show that the maximum stream rate of parasplit is network bound, and that the parallelization is energy efficient. Finally, the scalability of our approach is experimentally demonstrated on the Linear Road Benchmark, showing an order of magnitude higher stream processing rate over previously published results, allowing at least 512 expressways.
Abstract. Scalable execution of continuous queries over massive data streams often requires splitting input streams into parallel sub-streams over which query operators are executed in parallel. Automatic stream splitting is in general very difficult, as the optimal parallelization may depend on application semantics. To enable application specific stream splitting, we introduce splitstream functions where the user specifies non-procedural stream partitioning and replication. For high-volume streams, the stream splitting itself becomes a performance bottleneck. A cost model is introduced that estimates the performance of splitstream functions with respect to throughput and CPU usage. We implement parallel splitstream functions, and relate experimental results to cost model estimates. Based on the results, a splitstream function called autosplit is proposed, which scales well for high degrees of parallelism, and is robust for varying proportions of stream partitioning and replication. We show how user defined parallelization using autosplit provides substantially improved scalability (L = 64) over previously published results for the Linear Road Benchmark.
Transportation-related problems, like road congestion, parking, and pollution, are increasing in most cities. In order to reduce traffic, recent work has proposed methods for vehicle sharing, for example for sharing cabs by grouping "closeby" cab requests and thus minimizing transportation cost and utilizing cab space. However, the methods published so far do not scale to large data volumes, which is necessary to facilitate large-scale collective transportation systems, e.g., ride-sharing systems for large cities. This paper presents highly scalable trip grouping algorithms, which generalize previous techniques and support input rates that can be orders of magnitude larger. The following three contributions make the grouping algorithms scalable. First, the basic grouping algorithm is expressed as a continuous stream query in a data stream management system to allow for a very large flow of requests. Second, following the divide-and-conquer paradigm, four space-partitioning policies for dividing the input data stream into sub-streams are developed and implemented using continuous stream queries. Third, using the partitioning policies, parallel implementations of the grouping algorithm in a parallel computing environment are described. Extensive experimental results show that the parallel implementation using simple adaptive partitioning methods can achieve speed-ups of several orders of magnitude without significantly degrading the quality of the grouping.
Transportation-related problems, like road congestion, parking, and pollution, are increasing in most cities. In order to reduce traffic, recent work has proposed methods for vehicle sharing, for example for sharing cabs by grouping "closeby" cab requests and thus minimizing transportation cost and utilizing cab space. However, the methods published so far do not scale to large data volumes, which is necessary to facilitate large-scale collective transportation systems, e.g., ride-sharing systems for large cities. This paper presents highly scalable trip grouping algorithms, which generalize previous techniques and support input rates that can be orders of magnitude larger. The following three contributions make the grouping algorithms scalable. First, the basic grouping algorithm is expressed as a continuous stream query in a data stream management system to allow for a very large flow of requests. Second, following the divide-and-conquer paradigm, four space-partitioning policies for dividing the input data stream into sub-streams are developed and implemented using continuous stream queries. Third, using the partitioning policies, parallel implementations of the grouping algorithm in a parallel computing environment are described. Extensive experimental results show that the parallel implementation using simple adaptive partitioning methods can achieve speed-ups of several orders of magnitude without significantly degrading the quality of the grouping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.